Identifier
            
            
        
                Values
            
            ([(0,2),(1,2)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(0,3),(1,2)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(2,4),(3,4)],5) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(1,4),(2,3)],5) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(3,5),(4,5)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(2,5),(3,4)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(1,2),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(4,6),(5,6)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(3,6),(4,5)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(2,3),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
                    
                        
                search for individual values
                        
            
                            searching the database for the individual values of this statistic
                        
                    
                    
                Description
            The global dimension of the incidence algebra of the lattice over the rational numbers.
	Map
            connected vertex partitions
	    
	Description
            Sends a graph to the lattice of its connected vertex partitions.
A connected vertex partition of a graph $G = (V,E)$ is a set partition of $V$ such that each part induced a connected subgraph of $G$. The connected vertex partitions of $G$ form a lattice under refinement. If $G = K_n$ is a complete graph, the resulting lattice is the lattice of set partitions on $n$ elements.
In the language of matroid theory, this map sends a graph to the lattice of flats of its graphic matroid. The resulting lattice is a geometric lattice, i.e. it is atomistic and semimodular.
	A connected vertex partition of a graph $G = (V,E)$ is a set partition of $V$ such that each part induced a connected subgraph of $G$. The connected vertex partitions of $G$ form a lattice under refinement. If $G = K_n$ is a complete graph, the resulting lattice is the lattice of set partitions on $n$ elements.
In the language of matroid theory, this map sends a graph to the lattice of flats of its graphic matroid. The resulting lattice is a geometric lattice, i.e. it is atomistic and semimodular.
Map
            lattice of congruences
	    
	Description
            The lattice of congruences of a lattice.
A congruence of a lattice is an equivalence relation such that $a_1 \cong a_2$ and $b_1 \cong b_2$ implies $a_1 \vee b_1 \cong a_2 \vee b_2$ and $a_1 \wedge b_1 \cong a_2 \wedge b_2$.
The set of congruences ordered by refinement forms a lattice.
	A congruence of a lattice is an equivalence relation such that $a_1 \cong a_2$ and $b_1 \cong b_2$ implies $a_1 \vee b_1 \cong a_2 \vee b_2$ and $a_1 \wedge b_1 \cong a_2 \wedge b_2$.
The set of congruences ordered by refinement forms a lattice.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!