Identifier
-
Mp00013:
Binary trees
—to poset⟶
Posets
St001631: Posets ⟶ ℤ
Values
[.,.] => ([],1) => 0
[.,[.,.]] => ([(0,1)],2) => 1
[[.,.],.] => ([(0,1)],2) => 1
[.,[.,[.,.]]] => ([(0,2),(2,1)],3) => 2
[.,[[.,.],.]] => ([(0,2),(2,1)],3) => 2
[[.,.],[.,.]] => ([(0,2),(1,2)],3) => 0
[[.,[.,.]],.] => ([(0,2),(2,1)],3) => 2
[[[.,.],.],.] => ([(0,2),(2,1)],3) => 2
[.,[.,[.,[.,.]]]] => ([(0,3),(2,1),(3,2)],4) => 3
[.,[.,[[.,.],.]]] => ([(0,3),(2,1),(3,2)],4) => 3
[.,[[.,.],[.,.]]] => ([(0,3),(1,3),(3,2)],4) => 1
[.,[[.,[.,.]],.]] => ([(0,3),(2,1),(3,2)],4) => 3
[.,[[[.,.],.],.]] => ([(0,3),(2,1),(3,2)],4) => 3
[[.,.],[.,[.,.]]] => ([(0,3),(1,2),(2,3)],4) => 1
[[.,.],[[.,.],.]] => ([(0,3),(1,2),(2,3)],4) => 1
[[.,[.,.]],[.,.]] => ([(0,3),(1,2),(2,3)],4) => 1
[[[.,.],.],[.,.]] => ([(0,3),(1,2),(2,3)],4) => 1
[[.,[.,[.,.]]],.] => ([(0,3),(2,1),(3,2)],4) => 3
[[.,[[.,.],.]],.] => ([(0,3),(2,1),(3,2)],4) => 3
[[[.,.],[.,.]],.] => ([(0,3),(1,3),(3,2)],4) => 1
[[[.,[.,.]],.],.] => ([(0,3),(2,1),(3,2)],4) => 3
[[[[.,.],.],.],.] => ([(0,3),(2,1),(3,2)],4) => 3
[.,[.,[.,[.,[.,.]]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[.,[.,[.,[[.,.],.]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[.,[.,[[.,.],[.,.]]]] => ([(0,4),(1,4),(2,3),(4,2)],5) => 2
[.,[.,[[.,[.,.]],.]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[.,[.,[[[.,.],.],.]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[.,[[.,.],[.,[.,.]]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => 2
[.,[[.,.],[[.,.],.]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => 2
[.,[[.,[.,.]],[.,.]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => 2
[.,[[[.,.],.],[.,.]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => 2
[.,[[.,[.,[.,.]]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[.,[[.,[[.,.],.]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[.,[[[.,.],[.,.]],.]] => ([(0,4),(1,4),(2,3),(4,2)],5) => 2
[.,[[[.,[.,.]],.],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[.,[[[[.,.],.],.],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[[.,.],[.,[.,[.,.]]]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 2
[[.,.],[.,[[.,.],.]]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 2
[[.,.],[[.,.],[.,.]]] => ([(0,4),(1,3),(2,3),(3,4)],5) => 0
[[.,.],[[.,[.,.]],.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 2
[[.,.],[[[.,.],.],.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 2
[[.,[.,.]],[.,[.,.]]] => ([(0,3),(1,2),(2,4),(3,4)],5) => 2
[[.,[.,.]],[[.,.],.]] => ([(0,3),(1,2),(2,4),(3,4)],5) => 2
[[[.,.],.],[.,[.,.]]] => ([(0,3),(1,2),(2,4),(3,4)],5) => 2
[[[.,.],.],[[.,.],.]] => ([(0,3),(1,2),(2,4),(3,4)],5) => 2
[[.,[.,[.,.]]],[.,.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 2
[[.,[[.,.],.]],[.,.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 2
[[[.,.],[.,.]],[.,.]] => ([(0,4),(1,3),(2,3),(3,4)],5) => 0
[[[.,[.,.]],.],[.,.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 2
[[[[.,.],.],.],[.,.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 2
[[.,[.,[.,[.,.]]]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[[.,[.,[[.,.],.]]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[[.,[[.,.],[.,.]]],.] => ([(0,4),(1,4),(2,3),(4,2)],5) => 2
[[.,[[.,[.,.]],.]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[[.,[[[.,.],.],.]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[[[.,.],[.,[.,.]]],.] => ([(0,4),(1,2),(2,4),(4,3)],5) => 2
[[[.,.],[[.,.],.]],.] => ([(0,4),(1,2),(2,4),(4,3)],5) => 2
[[[.,[.,.]],[.,.]],.] => ([(0,4),(1,2),(2,4),(4,3)],5) => 2
[[[[.,.],.],[.,.]],.] => ([(0,4),(1,2),(2,4),(4,3)],5) => 2
[[[.,[.,[.,.]]],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[[[.,[[.,.],.]],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[[[[.,.],[.,.]],.],.] => ([(0,4),(1,4),(2,3),(4,2)],5) => 2
[[[[.,[.,.]],.],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[[[[[.,.],.],.],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[.,[.,[.,[.,[.,[.,.]]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[.,[.,[.,[.,[[.,.],.]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[.,[.,[.,[[.,.],[.,.]]]]] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => 3
[.,[.,[.,[[.,[.,.]],.]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[.,[.,[.,[[[.,.],.],.]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[.,[.,[[.,.],[.,[.,.]]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 3
[.,[.,[[.,.],[[.,.],.]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 3
[.,[.,[[.,[.,.]],[.,.]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 3
[.,[.,[[[.,.],.],[.,.]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 3
[.,[.,[[.,[.,[.,.]]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[.,[.,[[.,[[.,.],.]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[.,[.,[[[.,.],[.,.]],.]]] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => 3
[.,[.,[[[.,[.,.]],.],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[.,[.,[[[[.,.],.],.],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[.,[[.,.],[.,[.,[.,.]]]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 3
[.,[[.,.],[.,[[.,.],.]]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 3
[.,[[.,.],[[.,.],[.,.]]]] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => 1
[.,[[.,.],[[.,[.,.]],.]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 3
[.,[[.,.],[[[.,.],.],.]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 3
[.,[[.,[.,.]],[.,[.,.]]]] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => 3
[.,[[.,[.,.]],[[.,.],.]]] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => 3
[.,[[[.,.],.],[.,[.,.]]]] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => 3
[.,[[[.,.],.],[[.,.],.]]] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => 3
[.,[[.,[.,[.,.]]],[.,.]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 3
[.,[[.,[[.,.],.]],[.,.]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 3
[.,[[[.,.],[.,.]],[.,.]]] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => 1
[.,[[[.,[.,.]],.],[.,.]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 3
[.,[[[[.,.],.],.],[.,.]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 3
[.,[[.,[.,[.,[.,.]]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[.,[[.,[.,[[.,.],.]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[.,[[.,[[.,.],[.,.]]],.]] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => 3
[.,[[.,[[.,[.,.]],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[.,[[.,[[[.,.],.],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[.,[[[.,.],[.,[.,.]]],.]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 3
[.,[[[.,.],[[.,.],.]],.]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 3
[.,[[[.,[.,.]],[.,.]],.]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 3
[.,[[[[.,.],.],[.,.]],.]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 3
>>> Load all 260 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of simple modules S with dimExt1(S,A)=1 in the incidence algebra A of the poset.
Map
to poset
Description
Return the poset obtained by interpreting the tree as a Hasse diagram.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!