Identifier
Values
([(1,2)],3) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 2
([(2,3)],4) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 2
([(1,3),(2,3)],4) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 2
([(1,2),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3)],4) => 0
([(3,4)],5) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 2
([(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 2
([(1,4),(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 2
([(1,4),(2,3)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4)],5) => 0
([(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,3),(0,4),(3,2),(4,1)],5) => 2
([(2,3),(2,4),(3,4)],5) => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3)],4) => 0
([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(4,1),(4,2)],5) => 1
([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3)],4) => 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4)],5) => 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4)],5) => 0
([(4,5)],6) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 2
([(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 2
([(2,5),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 2
([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 2
([(2,5),(3,4)],6) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4)],5) => 0
([(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,3),(0,4),(3,2),(4,1)],5) => 2
([(1,2),(3,5),(4,5)],6) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4)],5) => 0
([(3,4),(3,5),(4,5)],6) => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3)],4) => 0
([(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,3),(0,4),(3,2),(4,1)],5) => 2
([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(4,1),(4,2)],5) => 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(4,1),(4,2)],5) => 1
([(2,4),(2,5),(3,4),(3,5)],6) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,3),(0,4),(3,2),(4,1)],5) => 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3)],4) => 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6) => 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(4,1),(4,2)],5) => 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4)],5) => 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3)],4) => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4)],5) => 0
([(1,5),(2,4),(3,4),(3,5)],6) => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(3,5),(4,5)],6) => 0
([(1,2),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5)],6) => 0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(5,1)],6) => 0
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5)],6) => 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5)],6) => 0
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(4,2),(5,1)],6) => 0
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,4),(0,5),(4,3),(5,1),(5,2)],6) => 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4)],6) => 0
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => ([(0,3),(0,5),(1,4),(1,5),(4,2)],6) => 0
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(4,2),(5,1)],6) => 0
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4)],5) => 0
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6) => ([(0,4),(0,5),(5,1),(5,2),(5,3)],6) => 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,4),(0,5),(5,1),(5,2)],6) => 0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5)],6) => 0
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(4,1),(4,2)],5) => 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4)],5) => 0
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3)],4) => 0
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4)],5) => 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,4),(3,4),(3,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,5)],6) => 0
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5)],6) => 0
([(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 2
([(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 2
([(3,6),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 2
([(2,6),(3,6),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 2
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 2
([(3,6),(4,5)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4)],5) => 0
([(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,3),(0,4),(3,2),(4,1)],5) => 2
([(2,3),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4)],5) => 0
([(4,5),(4,6),(5,6)],7) => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3)],4) => 0
([(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,3),(0,4),(3,2),(4,1)],5) => 2
([(1,2),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4)],5) => 0
([(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(4,1),(4,2)],5) => 1
([(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,3),(0,4),(3,2),(4,1)],5) => 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(4,1),(4,2)],5) => 1
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(4,1),(4,2)],5) => 1
([(3,5),(3,6),(4,5),(4,6)],7) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 2
([(1,6),(2,6),(3,5),(4,5)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4)],5) => 0
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,3),(0,4),(3,2),(4,1)],5) => 2
([(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(3,5),(4,5)],6) => 0
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3)],4) => 0
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6) => 2
([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,3),(0,4),(3,2),(4,1)],5) => 2
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,3),(0,4),(3,2),(4,1)],5) => 2
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(4,1),(4,2)],5) => 1
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6) => 2
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(4,1),(4,2)],5) => 1
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4)],5) => 0
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 2
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(3,5),(4,5)],6) => 0
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,3),(0,4),(3,2),(4,1)],5) => 2
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3)],4) => 0
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6) => 2
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4)],5) => 0
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(4,1),(4,2)],5) => 1
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4)],5) => 0
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 2
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3)],4) => 0
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4)],5) => 0
([(2,6),(3,5),(4,5),(4,6)],7) => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(3,5),(4,5)],6) => 0
([(2,3),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5)],6) => 0
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(5,1)],6) => 0
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5)],6) => 0
([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5)],6) => 0
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(4,2),(5,1)],6) => 0
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,4),(0,5),(4,3),(5,1),(5,2)],6) => 1
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4)],6) => 0
>>> Load all 169 entries. <<<
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(4,2),(5,1)],6) => 0
([(0,6),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => ([(0,3),(0,5),(1,4),(1,5),(4,2)],6) => 0
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4)],5) => 0
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5)],6) => 0
([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(3,5),(4,5)],6) => 0
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5)],6) => 0
([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(5,1)],6) => 0
([(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(5,1)],6) => 0
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(5,1)],6) => 0
([(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5)],6) => 0
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4)],5) => 0
([(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,4),(0,5),(4,3),(5,1),(5,2)],6) => 1
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6) => ([(0,4),(0,5),(5,1),(5,2),(5,3)],6) => 1
([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6) => ([(0,4),(0,5),(5,1),(5,2),(5,3)],6) => 1
([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5)],6) => 0
([(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(4,2),(5,1)],6) => 0
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,4),(0,5),(4,3),(5,1),(5,2)],6) => 1
([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(4,2),(5,1)],6) => 0
([(0,6),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => ([(0,3),(0,5),(1,4),(1,5),(4,2)],6) => 0
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => ([(0,3),(0,5),(1,4),(1,5),(4,2)],6) => 0
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(4,2),(5,1)],6) => 0
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,4),(0,5),(5,1),(5,2)],6) => 0
([(0,6),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5)],6) => 0
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(4,1),(4,2)],5) => 1
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,4),(0,5),(5,1),(5,2)],6) => 0
([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,3),(0,4),(3,2),(4,1)],5) => 2
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(4,1),(4,2)],5) => 1
([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6) => 2
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3)],4) => 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4)],5) => 0
([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(4,1),(4,2)],5) => 1
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,3),(0,4),(3,2),(4,1)],5) => 2
([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(5,1)],6) => 0
([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(4,2),(5,1)],6) => 0
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,4),(0,5),(4,3),(5,1),(5,2)],6) => 1
([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4)],6) => 0
([(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => ([(0,3),(0,5),(1,4),(1,5),(4,2)],6) => 0
([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(4,2),(5,1)],6) => 0
([(0,6),(1,5),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => ([(0,3),(0,5),(1,4),(1,5),(4,2)],6) => 0
([(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,4),(0,5),(4,3),(5,1),(5,2)],6) => 1
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4)],5) => 0
([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6) => ([(0,4),(0,5),(5,1),(5,2),(5,3)],6) => 1
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,4),(3,4),(3,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,5)],6) => 0
([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,4),(0,5),(5,1),(5,2)],6) => 0
([(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5)],6) => 0
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,4),(3,4),(3,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,5)],6) => 0
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 2
([(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(4,1),(4,2)],5) => 1
([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(4,1),(4,2)],5) => 1
([(0,6),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4)],5) => 0
([(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4)],5) => 0
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3)],4) => 0
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4)],5) => 0
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4)],5) => 0
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,4),(3,4),(3,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,5)],6) => 0
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5)],6) => 0
([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5)],6) => 0
([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => ([(0,3),(0,5),(1,4),(1,5),(4,2)],6) => 0
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(4,2),(5,1)],6) => 0
([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6) => ([(0,4),(0,5),(5,1),(5,2),(5,3)],6) => 1
([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,4),(0,5),(5,1),(5,2)],6) => 0
([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5)],6) => 0
([(0,3),(0,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,4),(3,4),(3,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,5)],6) => 0
([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,4),(3,4),(3,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,5)],6) => 0
([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3)],4) => 0
([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4)],5) => 0
([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4)],5) => 0
([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5)],6) => 0
search for individual values
searching the database for the individual values of this statistic
Description
The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset.
Map
weak duplicate order
Description
The weak duplicate order of the de-duplicate of a graph.
Let $G=(V, E)$ be a graph and let $N=\{ N_v | v\in V\}$ be the set of (distinct) neighbourhoods of $G$.
This map yields the poset obtained by ordering $N$ by reverse inclusion.
Map
dual poset
Description
The dual of a poset.
The dual (or opposite) of a poset $(\mathcal P,\leq)$ is the poset $(\mathcal P^d,\leq_d)$ with $x \leq_d y$ if $y \leq x$.