Identifier
Values
[1,2] => 0 => ([(0,1)],2) => 0
[2,1] => 1 => ([(0,1)],2) => 0
[1,2,3] => 00 => ([(0,2),(2,1)],3) => 0
[1,3,2] => 01 => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[2,1,3] => 10 => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[2,3,1] => 10 => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[3,1,2] => 10 => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[3,2,1] => 11 => ([(0,2),(2,1)],3) => 0
[1,2,3,4] => 000 => ([(0,3),(2,1),(3,2)],4) => 0
[1,2,4,3] => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[1,3,2,4] => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 2
[1,3,4,2] => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 2
[1,4,2,3] => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 2
[1,4,3,2] => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[2,1,3,4] => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[2,1,4,3] => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 2
[2,3,1,4] => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[2,3,4,1] => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[2,4,1,3] => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[2,4,3,1] => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 2
[3,1,2,4] => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[3,1,4,2] => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[3,2,1,4] => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[3,2,4,1] => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[3,4,1,2] => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[3,4,2,1] => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[4,1,2,3] => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[4,1,3,2] => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[4,2,1,3] => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[4,2,3,1] => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[4,3,1,2] => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 2
[4,3,2,1] => 111 => ([(0,3),(2,1),(3,2)],4) => 0
[1,2,3,4,5] => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[5,4,3,2,1] => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,2,3,4,5,6] => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[6,5,4,3,2,1] => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,2,3,4,5,6,7] => 000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 0
[7,6,5,4,3,2,1] => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of simple modules with projective dimension two in the incidence algebra of the poset.
Map
descent bottoms
Description
The descent bottoms of a permutation as a binary word.
Map
poset of factors
Description
The poset of factors of a binary word.
This is the partial order on the set of distinct factors of a binary word, such that $u < v$ if and only if $u$ is a factor of $v$.