Identifier
-
Mp00020:
Binary trees
—to Tamari-corresponding Dyck path⟶
Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
St001634: Posets ⟶ ℤ
Values
[.,.] => [1,0] => ([],1) => -1
[.,[.,.]] => [1,1,0,0] => ([(0,1)],2) => -1
[[.,.],.] => [1,0,1,0] => ([(0,1)],2) => -1
[.,[.,[.,.]]] => [1,1,1,0,0,0] => ([(0,1),(0,2),(1,3),(2,3)],4) => -1
[.,[[.,.],.]] => [1,1,0,1,0,0] => ([(0,2),(2,1)],3) => -1
[[.,.],[.,.]] => [1,0,1,1,0,0] => ([(0,2),(2,1)],3) => -1
[[.,[.,.]],.] => [1,1,0,0,1,0] => ([(0,2),(2,1)],3) => -1
[[[.,.],.],.] => [1,0,1,0,1,0] => ([(0,2),(2,1)],3) => -1
[.,[.,[.,[.,.]]]] => [1,1,1,1,0,0,0,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => -1
[.,[.,[[.,.],.]]] => [1,1,1,0,1,0,0,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => -1
[.,[[.,.],[.,.]]] => [1,1,0,1,1,0,0,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => -1
[.,[[.,[.,.]],.]] => [1,1,1,0,0,1,0,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => -1
[.,[[[.,.],.],.]] => [1,1,0,1,0,1,0,0] => ([(0,3),(2,1),(3,2)],4) => -1
[[.,.],[.,[.,.]]] => [1,0,1,1,1,0,0,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => -1
[[.,.],[[.,.],.]] => [1,0,1,1,0,1,0,0] => ([(0,3),(2,1),(3,2)],4) => -1
[[.,[.,.]],[.,.]] => [1,1,0,0,1,1,0,0] => ([(0,3),(2,1),(3,2)],4) => -1
[[[.,.],.],[.,.]] => [1,0,1,0,1,1,0,0] => ([(0,3),(2,1),(3,2)],4) => -1
[[.,[.,[.,.]]],.] => [1,1,1,0,0,0,1,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => -1
[[.,[[.,.],.]],.] => [1,1,0,1,0,0,1,0] => ([(0,3),(2,1),(3,2)],4) => -1
[[[.,.],[.,.]],.] => [1,0,1,1,0,0,1,0] => ([(0,3),(2,1),(3,2)],4) => -1
[[[.,[.,.]],.],.] => [1,1,0,0,1,0,1,0] => ([(0,3),(2,1),(3,2)],4) => -1
[[[[.,.],.],.],.] => [1,0,1,0,1,0,1,0] => ([(0,3),(2,1),(3,2)],4) => -1
[.,[[.,[.,.]],[.,.]]] => [1,1,1,0,0,1,1,0,0,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => -1
[.,[[[.,.],.],[.,.]]] => [1,1,0,1,0,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => -1
[.,[[[.,.],[.,.]],.]] => [1,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => -1
[.,[[[.,[.,.]],.],.]] => [1,1,1,0,0,1,0,1,0,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => -1
[.,[[[[.,.],.],.],.]] => [1,1,0,1,0,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => -1
[[.,.],[[.,.],[.,.]]] => [1,0,1,1,0,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => -1
[[.,.],[[.,[.,.]],.]] => [1,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => -1
[[.,.],[[[.,.],.],.]] => [1,0,1,1,0,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => -1
[[.,[.,.]],[.,[.,.]]] => [1,1,0,0,1,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => -1
[[.,[.,.]],[[.,.],.]] => [1,1,0,0,1,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => -1
[[[.,.],.],[.,[.,.]]] => [1,0,1,0,1,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => -1
[[[.,.],.],[[.,.],.]] => [1,0,1,0,1,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => -1
[[.,[.,[.,.]]],[.,.]] => [1,1,1,0,0,0,1,1,0,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => -1
[[.,[[.,.],.]],[.,.]] => [1,1,0,1,0,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => -1
[[[.,.],[.,.]],[.,.]] => [1,0,1,1,0,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => -1
[[[.,[.,.]],.],[.,.]] => [1,1,0,0,1,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => -1
[[[[.,.],.],.],[.,.]] => [1,0,1,0,1,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => -1
[[.,[[.,.],[.,.]]],.] => [1,1,0,1,1,0,0,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => -1
[[.,[[.,[.,.]],.]],.] => [1,1,1,0,0,1,0,0,1,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => -1
[[.,[[[.,.],.],.]],.] => [1,1,0,1,0,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => -1
[[[.,.],[.,[.,.]]],.] => [1,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => -1
[[[.,.],[[.,.],.]],.] => [1,0,1,1,0,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => -1
[[[.,[.,.]],[.,.]],.] => [1,1,0,0,1,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => -1
[[[[.,.],.],[.,.]],.] => [1,0,1,0,1,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => -1
[[[.,[.,[.,.]]],.],.] => [1,1,1,0,0,0,1,0,1,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => -1
[[[.,[[.,.],.]],.],.] => [1,1,0,1,0,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => -1
[[[[.,.],[.,.]],.],.] => [1,0,1,1,0,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => -1
[[[[.,[.,.]],.],.],.] => [1,1,0,0,1,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => -1
[[[[[.,.],.],.],.],.] => [1,0,1,0,1,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => -1
[.,[[[[.,.],.],[.,.]],.]] => [1,1,0,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => -1
[.,[[[[[.,.],.],.],.],.]] => [1,1,0,1,0,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[.,.],[[[.,.],[.,.]],.]] => [1,0,1,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => -1
[[.,.],[[[[.,.],.],.],.]] => [1,0,1,1,0,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[.,[.,.]],[[.,[.,.]],.]] => [1,1,0,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => -1
[[.,[.,.]],[[[.,.],.],.]] => [1,1,0,0,1,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[[.,.],.],[[.,[.,.]],.]] => [1,0,1,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => -1
[[[.,.],.],[[[.,.],.],.]] => [1,0,1,0,1,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[.,[[.,.],.]],[[.,.],.]] => [1,1,0,1,0,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[[.,.],[.,.]],[[.,.],.]] => [1,0,1,1,0,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[[.,[.,.]],.],[[.,.],.]] => [1,1,0,0,1,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[[[.,.],.],.],[[.,.],.]] => [1,0,1,0,1,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[.,[[[.,.],.],.]],[.,.]] => [1,1,0,1,0,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[[.,.],[[.,.],.]],[.,.]] => [1,0,1,1,0,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[[.,[.,.]],[.,.]],[.,.]] => [1,1,0,0,1,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[[[.,.],.],[.,.]],[.,.]] => [1,0,1,0,1,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[[.,[[.,.],.]],.],[.,.]] => [1,1,0,1,0,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[[[.,.],[.,.]],.],[.,.]] => [1,0,1,1,0,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[[[.,[.,.]],.],.],[.,.]] => [1,1,0,0,1,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[[[[.,.],.],.],.],[.,.]] => [1,0,1,0,1,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[.,[[[.,.],.],[.,.]]],.] => [1,1,0,1,0,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => -1
[[.,[[[[.,.],.],.],.]],.] => [1,1,0,1,0,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[[.,.],[[.,.],[.,.]]],.] => [1,0,1,1,0,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => -1
[[[.,.],[[[.,.],.],.]],.] => [1,0,1,1,0,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[[.,[.,.]],[.,[.,.]]],.] => [1,1,0,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => -1
[[[.,[.,.]],[[.,.],.]],.] => [1,1,0,0,1,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[[[.,.],.],[.,[.,.]]],.] => [1,0,1,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => -1
[[[[.,.],.],[[.,.],.]],.] => [1,0,1,0,1,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[[.,[[.,.],.]],[.,.]],.] => [1,1,0,1,0,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[[[.,.],[.,.]],[.,.]],.] => [1,0,1,1,0,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[[[.,[.,.]],.],[.,.]],.] => [1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[[[[.,.],.],.],[.,.]],.] => [1,0,1,0,1,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[[.,[[[.,.],.],.]],.],.] => [1,1,0,1,0,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[[[.,.],[[.,.],.]],.],.] => [1,0,1,1,0,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[[[.,[.,.]],[.,.]],.],.] => [1,1,0,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[[[[.,.],.],[.,.]],.],.] => [1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[[[.,[[.,.],.]],.],.],.] => [1,1,0,1,0,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[[[[.,.],[.,.]],.],.],.] => [1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[[[[.,[.,.]],.],.],.],.] => [1,1,0,0,1,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
[[[[[[.,.],.],.],.],.],.] => [1,0,1,0,1,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The trace of the Coxeter matrix of the incidence algebra of a poset.
Map
to Tamari-corresponding Dyck path
Description
Return the Dyck path associated with a binary tree in consistency with the Tamari order on Dyck words and binary trees.
The bijection is defined recursively as follows:
The bijection is defined recursively as follows:
- a leaf is associated with an empty Dyck path,
- a tree with children $l,r$ is associated with the Dyck word $T(l) 1 T(r) 0$ where $T(l)$ and $T(r)$ are the images of this bijection to $l$ and $r$.
Map
parallelogram poset
Description
The cell poset of the parallelogram polyomino corresponding to the Dyck path.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
This map returns the cell poset of $\gamma(D)$. In this partial order, the cells of the polyomino are the elements and a cell covers those cells with which it shares an edge and which are closer to the origin.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
This map returns the cell poset of $\gamma(D)$. In this partial order, the cells of the polyomino are the elements and a cell covers those cells with which it shares an edge and which are closer to the origin.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!