Identifier
-
Mp00032:
Dyck paths
—inverse zeta map⟶
Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
St001640: Permutations ⟶ ℤ
Values
[1,0] => [1,0] => [1,0] => [1] => 0
[1,0,1,0] => [1,1,0,0] => [1,0,1,0] => [2,1] => 0
[1,1,0,0] => [1,0,1,0] => [1,1,0,0] => [1,2] => 1
[1,0,1,0,1,0] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => [2,3,1] => 0
[1,0,1,1,0,0] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => [3,1,2] => 1
[1,1,0,0,1,0] => [1,1,0,1,0,0] => [1,0,1,1,0,0] => [2,1,3] => 1
[1,1,0,1,0,0] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => [1,3,2] => 0
[1,1,1,0,0,0] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => [1,2,3] => 2
[1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [2,3,4,1] => 0
[1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => [3,4,1,2] => 1
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0] => [2,4,1,3] => 1
[1,0,1,1,0,1,0,0] => [1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,0] => [1,3,4,2] => 0
[1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0] => [4,1,2,3] => 2
[1,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,0] => [1,0,1,0,1,1,0,0] => [2,3,1,4] => 1
[1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,0] => [3,1,2,4] => 2
[1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,0] => [2,1,4,3] => 0
[1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => [3,1,4,2] => 0
[1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,4,2,3] => 1
[1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0] => [2,1,3,4] => 2
[1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => [1,3,2,4] => 1
[1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0] => [1,2,4,3] => 1
[1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [1,2,3,4] => 3
[1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [2,3,4,5,1] => 0
[1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => [3,4,5,1,2] => 1
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => [2,4,5,1,3] => 1
[1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => [1,3,4,5,2] => 0
[1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [4,5,1,2,3] => 2
[1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => [2,3,5,1,4] => 1
[1,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,0,0] => [3,5,1,2,4] => 2
[1,0,1,1,0,1,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => [2,1,4,5,3] => 0
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => [3,4,1,5,2] => 0
[1,0,1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,4,5,2,3] => 1
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,1,0,1,0,0,0] => [2,5,1,3,4] => 2
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,0,0] => [1,3,5,2,4] => 1
[1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0] => [1,2,4,5,3] => 1
[1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => [5,1,2,3,4] => 3
[1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => [2,3,4,1,5] => 1
[1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,1,0,0,0] => [3,4,1,2,5] => 2
[1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0] => [2,4,1,3,5] => 2
[1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => [1,3,4,2,5] => 1
[1,1,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,0,1,1,0,0,0,0] => [4,1,2,3,5] => 3
[1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [2,3,1,5,4] => 0
[1,1,0,1,0,0,1,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => [3,1,5,2,4] => 1
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [2,4,1,5,3] => 0
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => [3,1,4,5,2] => 0
[1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0] => [4,1,5,2,3] => 1
[1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => [2,1,5,3,4] => 1
[1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [1,3,2,5,4] => 0
[1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => [4,1,2,5,3] => 1
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,0] => [1,5,2,3,4] => 2
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [2,3,1,4,5] => 2
[1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,0,0] => [3,1,2,4,5] => 3
[1,1,1,0,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [2,1,4,3,5] => 1
[1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [3,1,2,5,4] => 1
[1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => [1,4,2,3,5] => 2
[1,1,1,0,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => [2,1,3,5,4] => 1
[1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => [3,1,4,2,5] => 1
[1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0] => [1,4,2,5,3] => 0
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,2,5,3,4] => 2
[1,1,1,1,0,0,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => [2,1,3,4,5] => 3
[1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0] => [1,3,2,4,5] => 2
[1,1,1,1,0,0,1,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => [1,2,4,3,5] => 2
[1,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => [1,2,3,5,4] => 2
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => [1,2,3,4,5] => 4
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [2,3,4,5,6,1] => 0
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [3,4,5,6,1,2] => 1
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,1,0,1,0,1,0,1,0,0] => [2,4,5,6,1,3] => 1
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,3,4,5,6,2] => 0
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [4,5,6,1,2,3] => 2
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0] => [2,3,5,6,1,4] => 1
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [3,5,6,1,2,4] => 2
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [2,1,4,5,6,3] => 0
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [3,4,5,1,6,2] => 0
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [1,4,5,6,2,3] => 1
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,1,1,0,1,0,1,0,0,0] => [2,5,6,1,3,4] => 2
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,1,0,1,0,1,0,0] => [1,3,5,6,2,4] => 1
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => [1,2,4,5,6,3] => 1
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [5,6,1,2,3,4] => 3
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0] => [2,3,4,6,1,5] => 1
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [3,4,6,1,2,5] => 2
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,1,1,0,1,0,0,0] => [2,4,6,1,3,5] => 2
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,1,0,0] => [1,3,4,6,2,5] => 1
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [4,6,1,2,3,5] => 3
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [2,3,1,5,6,4] => 0
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [3,1,5,6,2,4] => 1
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => [2,4,5,1,6,3] => 0
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [3,1,4,5,6,2] => 0
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [4,5,1,6,2,3] => 1
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,1,1,0,0,1,0,1,0,0] => [2,1,5,6,3,4] => 1
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => [1,3,2,5,6,4] => 0
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => [4,5,1,2,6,3] => 1
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [1,5,6,2,3,4] => 2
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,1,0,1,0,0,0] => [2,3,6,1,4,5] => 2
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [3,6,1,2,4,5] => 3
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,1,0,0] => [2,1,4,6,3,5] => 1
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,0,0,1,0] => [3,5,1,2,6,4] => 1
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [1,4,6,2,3,5] => 2
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [2,1,3,5,6,4] => 1
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => [3,4,1,5,2,6] => 1
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,0,1,0] => [1,4,5,2,6,3] => 0
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,2,5,6,3,4] => 2
>>> Load all 306 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of ascent tops in the permutation such that all smaller elements appear before.
Map
inverse zeta map
Description
The inverse zeta map on Dyck paths.
See its inverse, the zeta map Mp00030zeta map, for the definition and details.
See its inverse, the zeta map Mp00030zeta map, for the definition and details.
Map
decomposition reverse
Description
This map is recursively defined as follows.
The unique empty path of semilength 0 is sent to itself.
Let D be a Dyck path of semilength n>0 and decompose it into 1D10D2 with Dyck paths D1,D2 of respective semilengths n1 and n2 such that n1 is minimal. One then has n1+n2=n−1.
Now let ˜D1 and ˜D2 be the recursively defined respective images of D1 and D2 under this map. The image of D is then defined as 1˜D20˜D1.
The unique empty path of semilength 0 is sent to itself.
Let D be a Dyck path of semilength n>0 and decompose it into 1D10D2 with Dyck paths D1,D2 of respective semilengths n1 and n2 such that n1 is minimal. One then has n1+n2=n−1.
Now let ˜D1 and ˜D2 be the recursively defined respective images of D1 and D2 under this map. The image of D is then defined as 1˜D20˜D1.
Map
to 321-avoiding permutation (Billey-Jockusch-Stanley)
Description
The Billey-Jockusch-Stanley bijection to 321-avoiding permutations.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!