Identifier
- St001641: Set partitions ⟶ ℤ
Values
=>
Cc0009;cc-rep
{{1}}=>0
{{1,2}}=>1
{{1},{2}}=>1
{{1,2,3}}=>2
{{1,2},{3}}=>2
{{1,3},{2}}=>0
{{1},{2,3}}=>2
{{1},{2},{3}}=>2
{{1,2,3,4}}=>3
{{1,2,3},{4}}=>3
{{1,2,4},{3}}=>1
{{1,2},{3,4}}=>3
{{1,2},{3},{4}}=>3
{{1,3,4},{2}}=>0
{{1,3},{2,4}}=>1
{{1,3},{2},{4}}=>1
{{1,4},{2,3}}=>1
{{1},{2,3,4}}=>3
{{1},{2,3},{4}}=>3
{{1,4},{2},{3}}=>1
{{1},{2,4},{3}}=>1
{{1},{2},{3,4}}=>3
{{1},{2},{3},{4}}=>3
{{1,2,3,4,5}}=>4
{{1,2,3,4},{5}}=>4
{{1,2,3,5},{4}}=>2
{{1,2,3},{4,5}}=>4
{{1,2,3},{4},{5}}=>4
{{1,2,4,5},{3}}=>1
{{1,2,4},{3,5}}=>2
{{1,2,4},{3},{5}}=>2
{{1,2,5},{3,4}}=>2
{{1,2},{3,4,5}}=>4
{{1,2},{3,4},{5}}=>4
{{1,2,5},{3},{4}}=>2
{{1,2},{3,5},{4}}=>2
{{1,2},{3},{4,5}}=>4
{{1,2},{3},{4},{5}}=>4
{{1,3,4,5},{2}}=>0
{{1,3,4},{2,5}}=>1
{{1,3,4},{2},{5}}=>1
{{1,3,5},{2,4}}=>1
{{1,3},{2,4,5}}=>2
{{1,3},{2,4},{5}}=>2
{{1,3,5},{2},{4}}=>1
{{1,3},{2,5},{4}}=>0
{{1,3},{2},{4,5}}=>2
{{1,3},{2},{4},{5}}=>2
{{1,4,5},{2,3}}=>1
{{1,4},{2,3,5}}=>2
{{1,4},{2,3},{5}}=>2
{{1,5},{2,3,4}}=>2
{{1},{2,3,4,5}}=>4
{{1},{2,3,4},{5}}=>4
{{1,5},{2,3},{4}}=>2
{{1},{2,3,5},{4}}=>2
{{1},{2,3},{4,5}}=>4
{{1},{2,3},{4},{5}}=>4
{{1,4,5},{2},{3}}=>1
{{1,4},{2,5},{3}}=>0
{{1,4},{2},{3,5}}=>2
{{1,4},{2},{3},{5}}=>2
{{1,5},{2,4},{3}}=>0
{{1},{2,4,5},{3}}=>1
{{1},{2,4},{3,5}}=>2
{{1},{2,4},{3},{5}}=>2
{{1,5},{2},{3,4}}=>2
{{1},{2,5},{3,4}}=>2
{{1},{2},{3,4,5}}=>4
{{1},{2},{3,4},{5}}=>4
{{1,5},{2},{3},{4}}=>2
{{1},{2,5},{3},{4}}=>2
{{1},{2},{3,5},{4}}=>2
{{1},{2},{3},{4,5}}=>4
{{1},{2},{3},{4},{5}}=>4
{{1,2,3,4,5,6}}=>5
{{1,2,3,4,5},{6}}=>5
{{1,2,3,4,6},{5}}=>3
{{1,2,3,4},{5,6}}=>5
{{1,2,3,4},{5},{6}}=>5
{{1,2,3,5,6},{4}}=>2
{{1,2,3,5},{4,6}}=>3
{{1,2,3,5},{4},{6}}=>3
{{1,2,3,6},{4,5}}=>3
{{1,2,3},{4,5,6}}=>5
{{1,2,3},{4,5},{6}}=>5
{{1,2,3,6},{4},{5}}=>3
{{1,2,3},{4,6},{5}}=>3
{{1,2,3},{4},{5,6}}=>5
{{1,2,3},{4},{5},{6}}=>5
{{1,2,4,5,6},{3}}=>1
{{1,2,4,5},{3,6}}=>2
{{1,2,4,5},{3},{6}}=>2
{{1,2,4,6},{3,5}}=>2
{{1,2,4},{3,5,6}}=>3
{{1,2,4},{3,5},{6}}=>3
{{1,2,4,6},{3},{5}}=>2
{{1,2,4},{3,6},{5}}=>1
{{1,2,4},{3},{5,6}}=>3
{{1,2,4},{3},{5},{6}}=>3
{{1,2,5,6},{3,4}}=>2
{{1,2,5},{3,4,6}}=>3
{{1,2,5},{3,4},{6}}=>3
{{1,2,6},{3,4,5}}=>3
{{1,2},{3,4,5,6}}=>5
{{1,2},{3,4,5},{6}}=>5
{{1,2,6},{3,4},{5}}=>3
{{1,2},{3,4,6},{5}}=>3
{{1,2},{3,4},{5,6}}=>5
{{1,2},{3,4},{5},{6}}=>5
{{1,2,5,6},{3},{4}}=>2
{{1,2,5},{3,6},{4}}=>1
{{1,2,5},{3},{4,6}}=>3
{{1,2,5},{3},{4},{6}}=>3
{{1,2,6},{3,5},{4}}=>1
{{1,2},{3,5,6},{4}}=>2
{{1,2},{3,5},{4,6}}=>3
{{1,2},{3,5},{4},{6}}=>3
{{1,2,6},{3},{4,5}}=>3
{{1,2},{3,6},{4,5}}=>3
{{1,2},{3},{4,5,6}}=>5
{{1,2},{3},{4,5},{6}}=>5
{{1,2,6},{3},{4},{5}}=>3
{{1,2},{3,6},{4},{5}}=>3
{{1,2},{3},{4,6},{5}}=>3
{{1,2},{3},{4},{5,6}}=>5
{{1,2},{3},{4},{5},{6}}=>5
{{1,3,4,5,6},{2}}=>0
{{1,3,4,5},{2,6}}=>1
{{1,3,4,5},{2},{6}}=>1
{{1,3,4,6},{2,5}}=>1
{{1,3,4},{2,5,6}}=>2
{{1,3,4},{2,5},{6}}=>2
{{1,3,4,6},{2},{5}}=>1
{{1,3,4},{2,6},{5}}=>0
{{1,3,4},{2},{5,6}}=>2
{{1,3,4},{2},{5},{6}}=>2
{{1,3,5,6},{2,4}}=>1
{{1,3,5},{2,4,6}}=>2
{{1,3,5},{2,4},{6}}=>2
{{1,3,6},{2,4,5}}=>2
{{1,3},{2,4,5,6}}=>3
{{1,3},{2,4,5},{6}}=>3
{{1,3,6},{2,4},{5}}=>2
{{1,3},{2,4,6},{5}}=>1
{{1,3},{2,4},{5,6}}=>3
{{1,3},{2,4},{5},{6}}=>3
{{1,3,5,6},{2},{4}}=>1
{{1,3,5},{2,6},{4}}=>0
{{1,3,5},{2},{4,6}}=>2
{{1,3,5},{2},{4},{6}}=>2
{{1,3,6},{2,5},{4}}=>0
{{1,3},{2,5,6},{4}}=>0
{{1,3},{2,5},{4,6}}=>1
{{1,3},{2,5},{4},{6}}=>1
{{1,3,6},{2},{4,5}}=>2
{{1,3},{2,6},{4,5}}=>1
{{1,3},{2},{4,5,6}}=>3
{{1,3},{2},{4,5},{6}}=>3
{{1,3,6},{2},{4},{5}}=>2
{{1,3},{2,6},{4},{5}}=>1
{{1,3},{2},{4,6},{5}}=>1
{{1,3},{2},{4},{5,6}}=>3
{{1,3},{2},{4},{5},{6}}=>3
{{1,4,5,6},{2,3}}=>1
{{1,4,5},{2,3,6}}=>2
{{1,4,5},{2,3},{6}}=>2
{{1,4,6},{2,3,5}}=>2
{{1,4},{2,3,5,6}}=>3
{{1,4},{2,3,5},{6}}=>3
{{1,4,6},{2,3},{5}}=>2
{{1,4},{2,3,6},{5}}=>1
{{1,4},{2,3},{5,6}}=>3
{{1,4},{2,3},{5},{6}}=>3
{{1,5,6},{2,3,4}}=>2
{{1,5},{2,3,4,6}}=>3
{{1,5},{2,3,4},{6}}=>3
{{1,6},{2,3,4,5}}=>3
{{1},{2,3,4,5,6}}=>5
{{1},{2,3,4,5},{6}}=>5
{{1,6},{2,3,4},{5}}=>3
{{1},{2,3,4,6},{5}}=>3
{{1},{2,3,4},{5,6}}=>5
{{1},{2,3,4},{5},{6}}=>5
{{1,5,6},{2,3},{4}}=>2
{{1,5},{2,3,6},{4}}=>1
{{1,5},{2,3},{4,6}}=>3
{{1,5},{2,3},{4},{6}}=>3
{{1,6},{2,3,5},{4}}=>1
{{1},{2,3,5,6},{4}}=>2
{{1},{2,3,5},{4,6}}=>3
{{1},{2,3,5},{4},{6}}=>3
{{1,6},{2,3},{4,5}}=>3
{{1},{2,3,6},{4,5}}=>3
{{1},{2,3},{4,5,6}}=>5
{{1},{2,3},{4,5},{6}}=>5
{{1,6},{2,3},{4},{5}}=>3
{{1},{2,3,6},{4},{5}}=>3
{{1},{2,3},{4,6},{5}}=>3
{{1},{2,3},{4},{5,6}}=>5
{{1},{2,3},{4},{5},{6}}=>5
{{1,4,5,6},{2},{3}}=>1
{{1,4,5},{2,6},{3}}=>0
{{1,4,5},{2},{3,6}}=>2
{{1,4,5},{2},{3},{6}}=>2
{{1,4,6},{2,5},{3}}=>0
{{1,4},{2,5,6},{3}}=>0
{{1,4},{2,5},{3,6}}=>1
{{1,4},{2,5},{3},{6}}=>1
{{1,4,6},{2},{3,5}}=>2
{{1,4},{2,6},{3,5}}=>1
{{1,4},{2},{3,5,6}}=>3
{{1,4},{2},{3,5},{6}}=>3
{{1,4,6},{2},{3},{5}}=>2
{{1,4},{2,6},{3},{5}}=>1
{{1,4},{2},{3,6},{5}}=>1
{{1,4},{2},{3},{5,6}}=>3
{{1,4},{2},{3},{5},{6}}=>3
{{1,5,6},{2,4},{3}}=>0
{{1,5},{2,4,6},{3}}=>0
{{1,5},{2,4},{3,6}}=>1
{{1,5},{2,4},{3},{6}}=>1
{{1,6},{2,4,5},{3}}=>0
{{1},{2,4,5,6},{3}}=>1
{{1},{2,4,5},{3,6}}=>2
{{1},{2,4,5},{3},{6}}=>2
{{1,6},{2,4},{3,5}}=>1
{{1},{2,4,6},{3,5}}=>2
{{1},{2,4},{3,5,6}}=>3
{{1},{2,4},{3,5},{6}}=>3
{{1,6},{2,4},{3},{5}}=>1
{{1},{2,4,6},{3},{5}}=>2
{{1},{2,4},{3,6},{5}}=>1
{{1},{2,4},{3},{5,6}}=>3
{{1},{2,4},{3},{5},{6}}=>3
{{1,5,6},{2},{3,4}}=>2
{{1,5},{2,6},{3,4}}=>1
{{1,5},{2},{3,4,6}}=>3
{{1,5},{2},{3,4},{6}}=>3
{{1,6},{2,5},{3,4}}=>1
{{1},{2,5,6},{3,4}}=>2
{{1},{2,5},{3,4,6}}=>3
{{1},{2,5},{3,4},{6}}=>3
{{1,6},{2},{3,4,5}}=>3
{{1},{2,6},{3,4,5}}=>3
{{1},{2},{3,4,5,6}}=>5
{{1},{2},{3,4,5},{6}}=>5
{{1,6},{2},{3,4},{5}}=>3
{{1},{2,6},{3,4},{5}}=>3
{{1},{2},{3,4,6},{5}}=>3
{{1},{2},{3,4},{5,6}}=>5
{{1},{2},{3,4},{5},{6}}=>5
{{1,5,6},{2},{3},{4}}=>2
{{1,5},{2,6},{3},{4}}=>1
{{1,5},{2},{3,6},{4}}=>1
{{1,5},{2},{3},{4,6}}=>3
{{1,5},{2},{3},{4},{6}}=>3
{{1,6},{2,5},{3},{4}}=>1
{{1},{2,5,6},{3},{4}}=>2
{{1},{2,5},{3,6},{4}}=>1
{{1},{2,5},{3},{4,6}}=>3
{{1},{2,5},{3},{4},{6}}=>3
{{1,6},{2},{3,5},{4}}=>1
{{1},{2,6},{3,5},{4}}=>1
{{1},{2},{3,5,6},{4}}=>2
{{1},{2},{3,5},{4,6}}=>3
{{1},{2},{3,5},{4},{6}}=>3
{{1,6},{2},{3},{4,5}}=>3
{{1},{2,6},{3},{4,5}}=>3
{{1},{2},{3,6},{4,5}}=>3
{{1},{2},{3},{4,5,6}}=>5
{{1},{2},{3},{4,5},{6}}=>5
{{1,6},{2},{3},{4},{5}}=>3
{{1},{2,6},{3},{4},{5}}=>3
{{1},{2},{3,6},{4},{5}}=>3
{{1},{2},{3},{4,6},{5}}=>3
{{1},{2},{3},{4},{5,6}}=>5
{{1},{2},{3},{4},{5},{6}}=>5
{{1,2,3,4,5,6,7}}=>6
{{1,2,3,4,5,6},{7}}=>6
{{1,2,3,4,5,7},{6}}=>4
{{1,2,3,4,5},{6,7}}=>6
{{1,2,3,4,5},{6},{7}}=>6
{{1,2,3,4,6,7},{5}}=>3
{{1,2,3,4,6},{5,7}}=>4
{{1,2,3,4,6},{5},{7}}=>4
{{1,2,3,4,7},{5,6}}=>4
{{1,2,3,4},{5,6,7}}=>6
{{1,2,3,4},{5,6},{7}}=>6
{{1,2,3,4,7},{5},{6}}=>4
{{1,2,3,4},{5,7},{6}}=>4
{{1,2,3,4},{5},{6,7}}=>6
{{1,2,3,4},{5},{6},{7}}=>6
{{1,2,3,5,6,7},{4}}=>2
{{1,2,3,5,6},{4,7}}=>3
{{1,2,3,5,6},{4},{7}}=>3
{{1,2,3,5,7},{4,6}}=>3
{{1,2,3,5},{4,6,7}}=>4
{{1,2,3,5},{4,6},{7}}=>4
{{1,2,3,5,7},{4},{6}}=>3
{{1,2,3,5},{4,7},{6}}=>2
{{1,2,3,5},{4},{6,7}}=>4
{{1,2,3,5},{4},{6},{7}}=>4
{{1,2,3,6,7},{4,5}}=>3
{{1,2,3,6},{4,5,7}}=>4
{{1,2,3,6},{4,5},{7}}=>4
{{1,2,3,7},{4,5,6}}=>4
{{1,2,3},{4,5,6,7}}=>6
{{1,2,3},{4,5,6},{7}}=>6
{{1,2,3,7},{4,5},{6}}=>4
{{1,2,3},{4,5,7},{6}}=>4
{{1,2,3},{4,5},{6,7}}=>6
{{1,2,3},{4,5},{6},{7}}=>6
{{1,2,3,6,7},{4},{5}}=>3
{{1,2,3,6},{4,7},{5}}=>2
{{1,2,3,6},{4},{5,7}}=>4
{{1,2,3,6},{4},{5},{7}}=>4
{{1,2,3,7},{4,6},{5}}=>2
{{1,2,3},{4,6,7},{5}}=>3
{{1,2,3},{4,6},{5,7}}=>4
{{1,2,3},{4,6},{5},{7}}=>4
{{1,2,3,7},{4},{5,6}}=>4
{{1,2,3},{4,7},{5,6}}=>4
{{1,2,3},{4},{5,6,7}}=>6
{{1,2,3},{4},{5,6},{7}}=>6
{{1,2,3,7},{4},{5},{6}}=>4
{{1,2,3},{4,7},{5},{6}}=>4
{{1,2,3},{4},{5,7},{6}}=>4
{{1,2,3},{4},{5},{6,7}}=>6
{{1,2,3},{4},{5},{6},{7}}=>6
{{1,2,4,5,6,7},{3}}=>1
{{1,2,4,5,6},{3,7}}=>2
{{1,2,4,5,6},{3},{7}}=>2
{{1,2,4,5,7},{3,6}}=>2
{{1,2,4,5},{3,6,7}}=>3
{{1,2,4,5},{3,6},{7}}=>3
{{1,2,4,5,7},{3},{6}}=>2
{{1,2,4,5},{3,7},{6}}=>1
{{1,2,4,5},{3},{6,7}}=>3
{{1,2,4,5},{3},{6},{7}}=>3
{{1,2,4,6,7},{3,5}}=>2
{{1,2,4,6},{3,5,7}}=>3
{{1,2,4,6},{3,5},{7}}=>3
{{1,2,4,7},{3,5,6}}=>3
{{1,2,4},{3,5,6,7}}=>4
{{1,2,4},{3,5,6},{7}}=>4
{{1,2,4,7},{3,5},{6}}=>3
{{1,2,4},{3,5,7},{6}}=>2
{{1,2,4},{3,5},{6,7}}=>4
{{1,2,4},{3,5},{6},{7}}=>4
{{1,2,4,6,7},{3},{5}}=>2
{{1,2,4,6},{3,7},{5}}=>1
{{1,2,4,6},{3},{5,7}}=>3
{{1,2,4,6},{3},{5},{7}}=>3
{{1,2,4,7},{3,6},{5}}=>1
{{1,2,4},{3,6,7},{5}}=>1
{{1,2,4},{3,6},{5,7}}=>2
{{1,2,4},{3,6},{5},{7}}=>2
{{1,2,4,7},{3},{5,6}}=>3
{{1,2,4},{3,7},{5,6}}=>2
{{1,2,4},{3},{5,6,7}}=>4
{{1,2,4},{3},{5,6},{7}}=>4
{{1,2,4,7},{3},{5},{6}}=>3
{{1,2,4},{3,7},{5},{6}}=>2
{{1,2,4},{3},{5,7},{6}}=>2
{{1,2,4},{3},{5},{6,7}}=>4
{{1,2,4},{3},{5},{6},{7}}=>4
{{1,2,5,6,7},{3,4}}=>2
{{1,2,5,6},{3,4,7}}=>3
{{1,2,5,6},{3,4},{7}}=>3
{{1,2,5,7},{3,4,6}}=>3
{{1,2,5},{3,4,6,7}}=>4
{{1,2,5},{3,4,6},{7}}=>4
{{1,2,5,7},{3,4},{6}}=>3
{{1,2,5},{3,4,7},{6}}=>2
{{1,2,5},{3,4},{6,7}}=>4
{{1,2,5},{3,4},{6},{7}}=>4
{{1,2,6,7},{3,4,5}}=>3
{{1,2,6},{3,4,5,7}}=>4
{{1,2,6},{3,4,5},{7}}=>4
{{1,2,7},{3,4,5,6}}=>4
{{1,2},{3,4,5,6,7}}=>6
{{1,2},{3,4,5,6},{7}}=>6
{{1,2,7},{3,4,5},{6}}=>4
{{1,2},{3,4,5,7},{6}}=>4
{{1,2},{3,4,5},{6,7}}=>6
{{1,2},{3,4,5},{6},{7}}=>6
{{1,2,6,7},{3,4},{5}}=>3
{{1,2,6},{3,4,7},{5}}=>2
{{1,2,6},{3,4},{5,7}}=>4
{{1,2,6},{3,4},{5},{7}}=>4
{{1,2,7},{3,4,6},{5}}=>2
{{1,2},{3,4,6,7},{5}}=>3
{{1,2},{3,4,6},{5,7}}=>4
{{1,2},{3,4,6},{5},{7}}=>4
{{1,2,7},{3,4},{5,6}}=>4
{{1,2},{3,4,7},{5,6}}=>4
{{1,2},{3,4},{5,6,7}}=>6
{{1,2},{3,4},{5,6},{7}}=>6
{{1,2,7},{3,4},{5},{6}}=>4
{{1,2},{3,4,7},{5},{6}}=>4
{{1,2},{3,4},{5,7},{6}}=>4
{{1,2},{3,4},{5},{6,7}}=>6
{{1,2},{3,4},{5},{6},{7}}=>6
{{1,2,5,6,7},{3},{4}}=>2
{{1,2,5,6},{3,7},{4}}=>1
{{1,2,5,6},{3},{4,7}}=>3
{{1,2,5,6},{3},{4},{7}}=>3
{{1,2,5,7},{3,6},{4}}=>1
{{1,2,5},{3,6,7},{4}}=>1
{{1,2,5},{3,6},{4,7}}=>2
{{1,2,5},{3,6},{4},{7}}=>2
{{1,2,5,7},{3},{4,6}}=>3
{{1,2,5},{3,7},{4,6}}=>2
{{1,2,5},{3},{4,6,7}}=>4
{{1,2,5},{3},{4,6},{7}}=>4
{{1,2,5,7},{3},{4},{6}}=>3
{{1,2,5},{3,7},{4},{6}}=>2
{{1,2,5},{3},{4,7},{6}}=>2
{{1,2,5},{3},{4},{6,7}}=>4
{{1,2,5},{3},{4},{6},{7}}=>4
{{1,2,6,7},{3,5},{4}}=>1
{{1,2,6},{3,5,7},{4}}=>1
{{1,2,6},{3,5},{4,7}}=>2
{{1,2,6},{3,5},{4},{7}}=>2
{{1,2,7},{3,5,6},{4}}=>1
{{1,2},{3,5,6,7},{4}}=>2
{{1,2},{3,5,6},{4,7}}=>3
{{1,2},{3,5,6},{4},{7}}=>3
{{1,2,7},{3,5},{4,6}}=>2
{{1,2},{3,5,7},{4,6}}=>3
{{1,2},{3,5},{4,6,7}}=>4
{{1,2},{3,5},{4,6},{7}}=>4
{{1,2,7},{3,5},{4},{6}}=>2
{{1,2},{3,5,7},{4},{6}}=>3
{{1,2},{3,5},{4,7},{6}}=>2
{{1,2},{3,5},{4},{6,7}}=>4
{{1,2},{3,5},{4},{6},{7}}=>4
{{1,2,6,7},{3},{4,5}}=>3
{{1,2,6},{3,7},{4,5}}=>2
{{1,2,6},{3},{4,5,7}}=>4
{{1,2,6},{3},{4,5},{7}}=>4
{{1,2,7},{3,6},{4,5}}=>2
{{1,2},{3,6,7},{4,5}}=>3
{{1,2},{3,6},{4,5,7}}=>4
{{1,2},{3,6},{4,5},{7}}=>4
{{1,2,7},{3},{4,5,6}}=>4
{{1,2},{3,7},{4,5,6}}=>4
{{1,2},{3},{4,5,6,7}}=>6
{{1,2},{3},{4,5,6},{7}}=>6
{{1,2,7},{3},{4,5},{6}}=>4
{{1,2},{3,7},{4,5},{6}}=>4
{{1,2},{3},{4,5,7},{6}}=>4
{{1,2},{3},{4,5},{6,7}}=>6
{{1,2},{3},{4,5},{6},{7}}=>6
{{1,2,6,7},{3},{4},{5}}=>3
{{1,2,6},{3,7},{4},{5}}=>2
{{1,2,6},{3},{4,7},{5}}=>2
{{1,2,6},{3},{4},{5,7}}=>4
{{1,2,6},{3},{4},{5},{7}}=>4
{{1,2,7},{3,6},{4},{5}}=>2
{{1,2},{3,6,7},{4},{5}}=>3
{{1,2},{3,6},{4,7},{5}}=>2
{{1,2},{3,6},{4},{5,7}}=>4
{{1,2},{3,6},{4},{5},{7}}=>4
{{1,2,7},{3},{4,6},{5}}=>2
{{1,2},{3,7},{4,6},{5}}=>2
{{1,2},{3},{4,6,7},{5}}=>3
{{1,2},{3},{4,6},{5,7}}=>4
{{1,2},{3},{4,6},{5},{7}}=>4
{{1,2,7},{3},{4},{5,6}}=>4
{{1,2},{3,7},{4},{5,6}}=>4
{{1,2},{3},{4,7},{5,6}}=>4
{{1,2},{3},{4},{5,6,7}}=>6
{{1,2},{3},{4},{5,6},{7}}=>6
{{1,2,7},{3},{4},{5},{6}}=>4
{{1,2},{3,7},{4},{5},{6}}=>4
{{1,2},{3},{4,7},{5},{6}}=>4
{{1,2},{3},{4},{5,7},{6}}=>4
{{1,2},{3},{4},{5},{6,7}}=>6
{{1,2},{3},{4},{5},{6},{7}}=>6
{{1,3,4,5,6,7},{2}}=>0
{{1,3,4,5,6},{2,7}}=>1
{{1,3,4,5,6},{2},{7}}=>1
{{1,3,4,5,7},{2,6}}=>1
{{1,3,4,5},{2,6,7}}=>2
{{1,3,4,5},{2,6},{7}}=>2
{{1,3,4,5,7},{2},{6}}=>1
{{1,3,4,5},{2,7},{6}}=>0
{{1,3,4,5},{2},{6,7}}=>2
{{1,3,4,5},{2},{6},{7}}=>2
{{1,3,4,6,7},{2,5}}=>1
{{1,3,4,6},{2,5,7}}=>2
{{1,3,4,6},{2,5},{7}}=>2
{{1,3,4,7},{2,5,6}}=>2
{{1,3,4},{2,5,6,7}}=>3
{{1,3,4},{2,5,6},{7}}=>3
{{1,3,4,7},{2,5},{6}}=>2
{{1,3,4},{2,5,7},{6}}=>1
{{1,3,4},{2,5},{6,7}}=>3
{{1,3,4},{2,5},{6},{7}}=>3
{{1,3,4,6,7},{2},{5}}=>1
{{1,3,4,6},{2,7},{5}}=>0
{{1,3,4,6},{2},{5,7}}=>2
{{1,3,4,6},{2},{5},{7}}=>2
{{1,3,4,7},{2,6},{5}}=>0
{{1,3,4},{2,6,7},{5}}=>0
{{1,3,4},{2,6},{5,7}}=>1
{{1,3,4},{2,6},{5},{7}}=>1
{{1,3,4,7},{2},{5,6}}=>2
{{1,3,4},{2,7},{5,6}}=>1
{{1,3,4},{2},{5,6,7}}=>3
{{1,3,4},{2},{5,6},{7}}=>3
{{1,3,4,7},{2},{5},{6}}=>2
{{1,3,4},{2,7},{5},{6}}=>1
{{1,3,4},{2},{5,7},{6}}=>1
{{1,3,4},{2},{5},{6,7}}=>3
{{1,3,4},{2},{5},{6},{7}}=>3
{{1,3,5,6,7},{2,4}}=>1
{{1,3,5,6},{2,4,7}}=>2
{{1,3,5,6},{2,4},{7}}=>2
{{1,3,5,7},{2,4,6}}=>2
{{1,3,5},{2,4,6,7}}=>3
{{1,3,5},{2,4,6},{7}}=>3
{{1,3,5,7},{2,4},{6}}=>2
{{1,3,5},{2,4,7},{6}}=>1
{{1,3,5},{2,4},{6,7}}=>3
{{1,3,5},{2,4},{6},{7}}=>3
{{1,3,6,7},{2,4,5}}=>2
{{1,3,6},{2,4,5,7}}=>3
{{1,3,6},{2,4,5},{7}}=>3
{{1,3,7},{2,4,5,6}}=>3
{{1,3},{2,4,5,6,7}}=>4
{{1,3},{2,4,5,6},{7}}=>4
{{1,3,7},{2,4,5},{6}}=>3
{{1,3},{2,4,5,7},{6}}=>2
{{1,3},{2,4,5},{6,7}}=>4
{{1,3},{2,4,5},{6},{7}}=>4
{{1,3,6,7},{2,4},{5}}=>2
{{1,3,6},{2,4,7},{5}}=>1
{{1,3,6},{2,4},{5,7}}=>3
{{1,3,6},{2,4},{5},{7}}=>3
{{1,3,7},{2,4,6},{5}}=>1
{{1,3},{2,4,6,7},{5}}=>1
{{1,3},{2,4,6},{5,7}}=>2
{{1,3},{2,4,6},{5},{7}}=>2
{{1,3,7},{2,4},{5,6}}=>3
{{1,3},{2,4,7},{5,6}}=>2
{{1,3},{2,4},{5,6,7}}=>4
{{1,3},{2,4},{5,6},{7}}=>4
{{1,3,7},{2,4},{5},{6}}=>3
{{1,3},{2,4,7},{5},{6}}=>2
{{1,3},{2,4},{5,7},{6}}=>2
{{1,3},{2,4},{5},{6,7}}=>4
{{1,3},{2,4},{5},{6},{7}}=>4
{{1,3,5,6,7},{2},{4}}=>1
{{1,3,5,6},{2,7},{4}}=>0
{{1,3,5,6},{2},{4,7}}=>2
{{1,3,5,6},{2},{4},{7}}=>2
{{1,3,5,7},{2,6},{4}}=>0
{{1,3,5},{2,6,7},{4}}=>0
{{1,3,5},{2,6},{4,7}}=>1
{{1,3,5},{2,6},{4},{7}}=>1
{{1,3,5,7},{2},{4,6}}=>2
{{1,3,5},{2,7},{4,6}}=>1
{{1,3,5},{2},{4,6,7}}=>3
{{1,3,5},{2},{4,6},{7}}=>3
{{1,3,5,7},{2},{4},{6}}=>2
{{1,3,5},{2,7},{4},{6}}=>1
{{1,3,5},{2},{4,7},{6}}=>1
{{1,3,5},{2},{4},{6,7}}=>3
{{1,3,5},{2},{4},{6},{7}}=>3
{{1,3,6,7},{2,5},{4}}=>0
{{1,3,6},{2,5,7},{4}}=>0
{{1,3,6},{2,5},{4,7}}=>1
{{1,3,6},{2,5},{4},{7}}=>1
{{1,3,7},{2,5,6},{4}}=>0
{{1,3},{2,5,6,7},{4}}=>0
{{1,3},{2,5,6},{4,7}}=>1
{{1,3},{2,5,6},{4},{7}}=>1
{{1,3,7},{2,5},{4,6}}=>1
{{1,3},{2,5,7},{4,6}}=>1
{{1,3},{2,5},{4,6,7}}=>2
{{1,3},{2,5},{4,6},{7}}=>2
{{1,3,7},{2,5},{4},{6}}=>1
{{1,3},{2,5,7},{4},{6}}=>1
{{1,3},{2,5},{4,7},{6}}=>0
{{1,3},{2,5},{4},{6,7}}=>2
{{1,3},{2,5},{4},{6},{7}}=>2
{{1,3,6,7},{2},{4,5}}=>2
{{1,3,6},{2,7},{4,5}}=>1
{{1,3,6},{2},{4,5,7}}=>3
{{1,3,6},{2},{4,5},{7}}=>3
{{1,3,7},{2,6},{4,5}}=>1
{{1,3},{2,6,7},{4,5}}=>1
{{1,3},{2,6},{4,5,7}}=>2
{{1,3},{2,6},{4,5},{7}}=>2
{{1,3,7},{2},{4,5,6}}=>3
{{1,3},{2,7},{4,5,6}}=>2
{{1,3},{2},{4,5,6,7}}=>4
{{1,3},{2},{4,5,6},{7}}=>4
{{1,3,7},{2},{4,5},{6}}=>3
{{1,3},{2,7},{4,5},{6}}=>2
{{1,3},{2},{4,5,7},{6}}=>2
{{1,3},{2},{4,5},{6,7}}=>4
{{1,3},{2},{4,5},{6},{7}}=>4
{{1,3,6,7},{2},{4},{5}}=>2
{{1,3,6},{2,7},{4},{5}}=>1
{{1,3,6},{2},{4,7},{5}}=>1
{{1,3,6},{2},{4},{5,7}}=>3
{{1,3,6},{2},{4},{5},{7}}=>3
{{1,3,7},{2,6},{4},{5}}=>1
{{1,3},{2,6,7},{4},{5}}=>1
{{1,3},{2,6},{4,7},{5}}=>0
{{1,3},{2,6},{4},{5,7}}=>2
{{1,3},{2,6},{4},{5},{7}}=>2
{{1,3,7},{2},{4,6},{5}}=>1
{{1,3},{2,7},{4,6},{5}}=>0
{{1,3},{2},{4,6,7},{5}}=>1
{{1,3},{2},{4,6},{5,7}}=>2
{{1,3},{2},{4,6},{5},{7}}=>2
{{1,3,7},{2},{4},{5,6}}=>3
{{1,3},{2,7},{4},{5,6}}=>2
{{1,3},{2},{4,7},{5,6}}=>2
{{1,3},{2},{4},{5,6,7}}=>4
{{1,3},{2},{4},{5,6},{7}}=>4
{{1,3,7},{2},{4},{5},{6}}=>3
{{1,3},{2,7},{4},{5},{6}}=>2
{{1,3},{2},{4,7},{5},{6}}=>2
{{1,3},{2},{4},{5,7},{6}}=>2
{{1,3},{2},{4},{5},{6,7}}=>4
{{1,3},{2},{4},{5},{6},{7}}=>4
{{1,4,5,6,7},{2,3}}=>1
{{1,4,5,6},{2,3,7}}=>2
{{1,4,5,6},{2,3},{7}}=>2
{{1,4,5,7},{2,3,6}}=>2
{{1,4,5},{2,3,6,7}}=>3
{{1,4,5},{2,3,6},{7}}=>3
{{1,4,5,7},{2,3},{6}}=>2
{{1,4,5},{2,3,7},{6}}=>1
{{1,4,5},{2,3},{6,7}}=>3
{{1,4,5},{2,3},{6},{7}}=>3
{{1,4,6,7},{2,3,5}}=>2
{{1,4,6},{2,3,5,7}}=>3
{{1,4,6},{2,3,5},{7}}=>3
{{1,4,7},{2,3,5,6}}=>3
{{1,4},{2,3,5,6,7}}=>4
{{1,4},{2,3,5,6},{7}}=>4
{{1,4,7},{2,3,5},{6}}=>3
{{1,4},{2,3,5,7},{6}}=>2
{{1,4},{2,3,5},{6,7}}=>4
{{1,4},{2,3,5},{6},{7}}=>4
{{1,4,6,7},{2,3},{5}}=>2
{{1,4,6},{2,3,7},{5}}=>1
{{1,4,6},{2,3},{5,7}}=>3
{{1,4,6},{2,3},{5},{7}}=>3
{{1,4,7},{2,3,6},{5}}=>1
{{1,4},{2,3,6,7},{5}}=>1
{{1,4},{2,3,6},{5,7}}=>2
{{1,4},{2,3,6},{5},{7}}=>2
{{1,4,7},{2,3},{5,6}}=>3
{{1,4},{2,3,7},{5,6}}=>2
{{1,4},{2,3},{5,6,7}}=>4
{{1,4},{2,3},{5,6},{7}}=>4
{{1,4,7},{2,3},{5},{6}}=>3
{{1,4},{2,3,7},{5},{6}}=>2
{{1,4},{2,3},{5,7},{6}}=>2
{{1,4},{2,3},{5},{6,7}}=>4
{{1,4},{2,3},{5},{6},{7}}=>4
{{1,5,6,7},{2,3,4}}=>2
{{1,5,6},{2,3,4,7}}=>3
{{1,5,6},{2,3,4},{7}}=>3
{{1,5,7},{2,3,4,6}}=>3
{{1,5},{2,3,4,6,7}}=>4
{{1,5},{2,3,4,6},{7}}=>4
{{1,5,7},{2,3,4},{6}}=>3
{{1,5},{2,3,4,7},{6}}=>2
{{1,5},{2,3,4},{6,7}}=>4
{{1,5},{2,3,4},{6},{7}}=>4
{{1,6,7},{2,3,4,5}}=>3
{{1,6},{2,3,4,5,7}}=>4
{{1,6},{2,3,4,5},{7}}=>4
{{1,7},{2,3,4,5,6}}=>4
{{1},{2,3,4,5,6,7}}=>6
{{1},{2,3,4,5,6},{7}}=>6
{{1,7},{2,3,4,5},{6}}=>4
{{1},{2,3,4,5,7},{6}}=>4
{{1},{2,3,4,5},{6,7}}=>6
{{1},{2,3,4,5},{6},{7}}=>6
{{1,6,7},{2,3,4},{5}}=>3
{{1,6},{2,3,4,7},{5}}=>2
{{1,6},{2,3,4},{5,7}}=>4
{{1,6},{2,3,4},{5},{7}}=>4
{{1,7},{2,3,4,6},{5}}=>2
{{1},{2,3,4,6,7},{5}}=>3
{{1},{2,3,4,6},{5,7}}=>4
{{1},{2,3,4,6},{5},{7}}=>4
{{1,7},{2,3,4},{5,6}}=>4
{{1},{2,3,4,7},{5,6}}=>4
{{1},{2,3,4},{5,6,7}}=>6
{{1},{2,3,4},{5,6},{7}}=>6
{{1,7},{2,3,4},{5},{6}}=>4
{{1},{2,3,4,7},{5},{6}}=>4
{{1},{2,3,4},{5,7},{6}}=>4
{{1},{2,3,4},{5},{6,7}}=>6
{{1},{2,3,4},{5},{6},{7}}=>6
{{1,5,6,7},{2,3},{4}}=>2
{{1,5,6},{2,3,7},{4}}=>1
{{1,5,6},{2,3},{4,7}}=>3
{{1,5,6},{2,3},{4},{7}}=>3
{{1,5,7},{2,3,6},{4}}=>1
{{1,5},{2,3,6,7},{4}}=>1
{{1,5},{2,3,6},{4,7}}=>2
{{1,5},{2,3,6},{4},{7}}=>2
{{1,5,7},{2,3},{4,6}}=>3
{{1,5},{2,3,7},{4,6}}=>2
{{1,5},{2,3},{4,6,7}}=>4
{{1,5},{2,3},{4,6},{7}}=>4
{{1,5,7},{2,3},{4},{6}}=>3
{{1,5},{2,3,7},{4},{6}}=>2
{{1,5},{2,3},{4,7},{6}}=>2
{{1,5},{2,3},{4},{6,7}}=>4
{{1,5},{2,3},{4},{6},{7}}=>4
{{1,6,7},{2,3,5},{4}}=>1
{{1,6},{2,3,5,7},{4}}=>1
{{1,6},{2,3,5},{4,7}}=>2
{{1,6},{2,3,5},{4},{7}}=>2
{{1,7},{2,3,5,6},{4}}=>1
{{1},{2,3,5,6,7},{4}}=>2
{{1},{2,3,5,6},{4,7}}=>3
{{1},{2,3,5,6},{4},{7}}=>3
{{1,7},{2,3,5},{4,6}}=>2
{{1},{2,3,5,7},{4,6}}=>3
{{1},{2,3,5},{4,6,7}}=>4
{{1},{2,3,5},{4,6},{7}}=>4
{{1,7},{2,3,5},{4},{6}}=>2
{{1},{2,3,5,7},{4},{6}}=>3
{{1},{2,3,5},{4,7},{6}}=>2
{{1},{2,3,5},{4},{6,7}}=>4
{{1},{2,3,5},{4},{6},{7}}=>4
{{1,6,7},{2,3},{4,5}}=>3
{{1,6},{2,3,7},{4,5}}=>2
{{1,6},{2,3},{4,5,7}}=>4
{{1,6},{2,3},{4,5},{7}}=>4
{{1,7},{2,3,6},{4,5}}=>2
{{1},{2,3,6,7},{4,5}}=>3
{{1},{2,3,6},{4,5,7}}=>4
{{1},{2,3,6},{4,5},{7}}=>4
{{1,7},{2,3},{4,5,6}}=>4
{{1},{2,3,7},{4,5,6}}=>4
{{1},{2,3},{4,5,6,7}}=>6
{{1},{2,3},{4,5,6},{7}}=>6
{{1,7},{2,3},{4,5},{6}}=>4
{{1},{2,3,7},{4,5},{6}}=>4
{{1},{2,3},{4,5,7},{6}}=>4
{{1},{2,3},{4,5},{6,7}}=>6
{{1},{2,3},{4,5},{6},{7}}=>6
{{1,6,7},{2,3},{4},{5}}=>3
{{1,6},{2,3,7},{4},{5}}=>2
{{1,6},{2,3},{4,7},{5}}=>2
{{1,6},{2,3},{4},{5,7}}=>4
{{1,6},{2,3},{4},{5},{7}}=>4
{{1,7},{2,3,6},{4},{5}}=>2
{{1},{2,3,6,7},{4},{5}}=>3
{{1},{2,3,6},{4,7},{5}}=>2
{{1},{2,3,6},{4},{5,7}}=>4
{{1},{2,3,6},{4},{5},{7}}=>4
{{1,7},{2,3},{4,6},{5}}=>2
{{1},{2,3,7},{4,6},{5}}=>2
{{1},{2,3},{4,6,7},{5}}=>3
{{1},{2,3},{4,6},{5,7}}=>4
{{1},{2,3},{4,6},{5},{7}}=>4
{{1,7},{2,3},{4},{5,6}}=>4
{{1},{2,3,7},{4},{5,6}}=>4
{{1},{2,3},{4,7},{5,6}}=>4
{{1},{2,3},{4},{5,6,7}}=>6
{{1},{2,3},{4},{5,6},{7}}=>6
{{1,7},{2,3},{4},{5},{6}}=>4
{{1},{2,3,7},{4},{5},{6}}=>4
{{1},{2,3},{4,7},{5},{6}}=>4
{{1},{2,3},{4},{5,7},{6}}=>4
{{1},{2,3},{4},{5},{6,7}}=>6
{{1},{2,3},{4},{5},{6},{7}}=>6
{{1,4,5,6,7},{2},{3}}=>1
{{1,4,5,6},{2,7},{3}}=>0
{{1,4,5,6},{2},{3,7}}=>2
{{1,4,5,6},{2},{3},{7}}=>2
{{1,4,5,7},{2,6},{3}}=>0
{{1,4,5},{2,6,7},{3}}=>0
{{1,4,5},{2,6},{3,7}}=>1
{{1,4,5},{2,6},{3},{7}}=>1
{{1,4,5,7},{2},{3,6}}=>2
{{1,4,5},{2,7},{3,6}}=>1
{{1,4,5},{2},{3,6,7}}=>3
{{1,4,5},{2},{3,6},{7}}=>3
{{1,4,5,7},{2},{3},{6}}=>2
{{1,4,5},{2,7},{3},{6}}=>1
{{1,4,5},{2},{3,7},{6}}=>1
{{1,4,5},{2},{3},{6,7}}=>3
{{1,4,5},{2},{3},{6},{7}}=>3
{{1,4,6,7},{2,5},{3}}=>0
{{1,4,6},{2,5,7},{3}}=>0
{{1,4,6},{2,5},{3,7}}=>1
{{1,4,6},{2,5},{3},{7}}=>1
{{1,4,7},{2,5,6},{3}}=>0
{{1,4},{2,5,6,7},{3}}=>0
{{1,4},{2,5,6},{3,7}}=>1
{{1,4},{2,5,6},{3},{7}}=>1
{{1,4,7},{2,5},{3,6}}=>1
{{1,4},{2,5,7},{3,6}}=>1
{{1,4},{2,5},{3,6,7}}=>2
{{1,4},{2,5},{3,6},{7}}=>2
{{1,4,7},{2,5},{3},{6}}=>1
{{1,4},{2,5,7},{3},{6}}=>1
{{1,4},{2,5},{3,7},{6}}=>0
{{1,4},{2,5},{3},{6,7}}=>2
{{1,4},{2,5},{3},{6},{7}}=>2
{{1,4,6,7},{2},{3,5}}=>2
{{1,4,6},{2,7},{3,5}}=>1
{{1,4,6},{2},{3,5,7}}=>3
{{1,4,6},{2},{3,5},{7}}=>3
{{1,4,7},{2,6},{3,5}}=>1
{{1,4},{2,6,7},{3,5}}=>1
{{1,4},{2,6},{3,5,7}}=>2
{{1,4},{2,6},{3,5},{7}}=>2
{{1,4,7},{2},{3,5,6}}=>3
{{1,4},{2,7},{3,5,6}}=>2
{{1,4},{2},{3,5,6,7}}=>4
{{1,4},{2},{3,5,6},{7}}=>4
{{1,4,7},{2},{3,5},{6}}=>3
{{1,4},{2,7},{3,5},{6}}=>2
{{1,4},{2},{3,5,7},{6}}=>2
{{1,4},{2},{3,5},{6,7}}=>4
{{1,4},{2},{3,5},{6},{7}}=>4
{{1,4,6,7},{2},{3},{5}}=>2
{{1,4,6},{2,7},{3},{5}}=>1
{{1,4,6},{2},{3,7},{5}}=>1
{{1,4,6},{2},{3},{5,7}}=>3
{{1,4,6},{2},{3},{5},{7}}=>3
{{1,4,7},{2,6},{3},{5}}=>1
{{1,4},{2,6,7},{3},{5}}=>1
{{1,4},{2,6},{3,7},{5}}=>0
{{1,4},{2,6},{3},{5,7}}=>2
{{1,4},{2,6},{3},{5},{7}}=>2
{{1,4,7},{2},{3,6},{5}}=>1
{{1,4},{2,7},{3,6},{5}}=>0
{{1,4},{2},{3,6,7},{5}}=>1
{{1,4},{2},{3,6},{5,7}}=>2
{{1,4},{2},{3,6},{5},{7}}=>2
{{1,4,7},{2},{3},{5,6}}=>3
{{1,4},{2,7},{3},{5,6}}=>2
{{1,4},{2},{3,7},{5,6}}=>2
{{1,4},{2},{3},{5,6,7}}=>4
{{1,4},{2},{3},{5,6},{7}}=>4
{{1,4,7},{2},{3},{5},{6}}=>3
{{1,4},{2,7},{3},{5},{6}}=>2
{{1,4},{2},{3,7},{5},{6}}=>2
{{1,4},{2},{3},{5,7},{6}}=>2
{{1,4},{2},{3},{5},{6,7}}=>4
{{1,4},{2},{3},{5},{6},{7}}=>4
{{1,5,6,7},{2,4},{3}}=>0
{{1,5,6},{2,4,7},{3}}=>0
{{1,5,6},{2,4},{3,7}}=>1
{{1,5,6},{2,4},{3},{7}}=>1
{{1,5,7},{2,4,6},{3}}=>0
{{1,5},{2,4,6,7},{3}}=>0
{{1,5},{2,4,6},{3,7}}=>1
{{1,5},{2,4,6},{3},{7}}=>1
{{1,5,7},{2,4},{3,6}}=>1
{{1,5},{2,4,7},{3,6}}=>1
{{1,5},{2,4},{3,6,7}}=>2
{{1,5},{2,4},{3,6},{7}}=>2
{{1,5,7},{2,4},{3},{6}}=>1
{{1,5},{2,4,7},{3},{6}}=>1
{{1,5},{2,4},{3,7},{6}}=>0
{{1,5},{2,4},{3},{6,7}}=>2
{{1,5},{2,4},{3},{6},{7}}=>2
{{1,6,7},{2,4,5},{3}}=>0
{{1,6},{2,4,5,7},{3}}=>0
{{1,6},{2,4,5},{3,7}}=>1
{{1,6},{2,4,5},{3},{7}}=>1
{{1,7},{2,4,5,6},{3}}=>0
{{1},{2,4,5,6,7},{3}}=>1
{{1},{2,4,5,6},{3,7}}=>2
{{1},{2,4,5,6},{3},{7}}=>2
{{1,7},{2,4,5},{3,6}}=>1
{{1},{2,4,5,7},{3,6}}=>2
{{1},{2,4,5},{3,6,7}}=>3
{{1},{2,4,5},{3,6},{7}}=>3
{{1,7},{2,4,5},{3},{6}}=>1
{{1},{2,4,5,7},{3},{6}}=>2
{{1},{2,4,5},{3,7},{6}}=>1
{{1},{2,4,5},{3},{6,7}}=>3
{{1},{2,4,5},{3},{6},{7}}=>3
{{1,6,7},{2,4},{3,5}}=>1
{{1,6},{2,4,7},{3,5}}=>1
{{1,6},{2,4},{3,5,7}}=>2
{{1,6},{2,4},{3,5},{7}}=>2
{{1,7},{2,4,6},{3,5}}=>1
{{1},{2,4,6,7},{3,5}}=>2
{{1},{2,4,6},{3,5,7}}=>3
{{1},{2,4,6},{3,5},{7}}=>3
{{1,7},{2,4},{3,5,6}}=>2
{{1},{2,4,7},{3,5,6}}=>3
{{1},{2,4},{3,5,6,7}}=>4
{{1},{2,4},{3,5,6},{7}}=>4
{{1,7},{2,4},{3,5},{6}}=>2
{{1},{2,4,7},{3,5},{6}}=>3
{{1},{2,4},{3,5,7},{6}}=>2
{{1},{2,4},{3,5},{6,7}}=>4
{{1},{2,4},{3,5},{6},{7}}=>4
{{1,6,7},{2,4},{3},{5}}=>1
{{1,6},{2,4,7},{3},{5}}=>1
{{1,6},{2,4},{3,7},{5}}=>0
{{1,6},{2,4},{3},{5,7}}=>2
{{1,6},{2,4},{3},{5},{7}}=>2
{{1,7},{2,4,6},{3},{5}}=>1
{{1},{2,4,6,7},{3},{5}}=>2
{{1},{2,4,6},{3,7},{5}}=>1
{{1},{2,4,6},{3},{5,7}}=>3
{{1},{2,4,6},{3},{5},{7}}=>3
{{1,7},{2,4},{3,6},{5}}=>0
{{1},{2,4,7},{3,6},{5}}=>1
{{1},{2,4},{3,6,7},{5}}=>1
{{1},{2,4},{3,6},{5,7}}=>2
{{1},{2,4},{3,6},{5},{7}}=>2
{{1,7},{2,4},{3},{5,6}}=>2
{{1},{2,4,7},{3},{5,6}}=>3
{{1},{2,4},{3,7},{5,6}}=>2
{{1},{2,4},{3},{5,6,7}}=>4
{{1},{2,4},{3},{5,6},{7}}=>4
{{1,7},{2,4},{3},{5},{6}}=>2
{{1},{2,4,7},{3},{5},{6}}=>3
{{1},{2,4},{3,7},{5},{6}}=>2
{{1},{2,4},{3},{5,7},{6}}=>2
{{1},{2,4},{3},{5},{6,7}}=>4
{{1},{2,4},{3},{5},{6},{7}}=>4
{{1,5,6,7},{2},{3,4}}=>2
{{1,5,6},{2,7},{3,4}}=>1
{{1,5,6},{2},{3,4,7}}=>3
{{1,5,6},{2},{3,4},{7}}=>3
{{1,5,7},{2,6},{3,4}}=>1
{{1,5},{2,6,7},{3,4}}=>1
{{1,5},{2,6},{3,4,7}}=>2
{{1,5},{2,6},{3,4},{7}}=>2
{{1,5,7},{2},{3,4,6}}=>3
{{1,5},{2,7},{3,4,6}}=>2
{{1,5},{2},{3,4,6,7}}=>4
{{1,5},{2},{3,4,6},{7}}=>4
{{1,5,7},{2},{3,4},{6}}=>3
{{1,5},{2,7},{3,4},{6}}=>2
{{1,5},{2},{3,4,7},{6}}=>2
{{1,5},{2},{3,4},{6,7}}=>4
{{1,5},{2},{3,4},{6},{7}}=>4
{{1,6,7},{2,5},{3,4}}=>1
{{1,6},{2,5,7},{3,4}}=>1
{{1,6},{2,5},{3,4,7}}=>2
{{1,6},{2,5},{3,4},{7}}=>2
{{1,7},{2,5,6},{3,4}}=>1
{{1},{2,5,6,7},{3,4}}=>2
{{1},{2,5,6},{3,4,7}}=>3
{{1},{2,5,6},{3,4},{7}}=>3
{{1,7},{2,5},{3,4,6}}=>2
{{1},{2,5,7},{3,4,6}}=>3
{{1},{2,5},{3,4,6,7}}=>4
{{1},{2,5},{3,4,6},{7}}=>4
{{1,7},{2,5},{3,4},{6}}=>2
{{1},{2,5,7},{3,4},{6}}=>3
{{1},{2,5},{3,4,7},{6}}=>2
{{1},{2,5},{3,4},{6,7}}=>4
{{1},{2,5},{3,4},{6},{7}}=>4
{{1,6,7},{2},{3,4,5}}=>3
{{1,6},{2,7},{3,4,5}}=>2
{{1,6},{2},{3,4,5,7}}=>4
{{1,6},{2},{3,4,5},{7}}=>4
{{1,7},{2,6},{3,4,5}}=>2
{{1},{2,6,7},{3,4,5}}=>3
{{1},{2,6},{3,4,5,7}}=>4
{{1},{2,6},{3,4,5},{7}}=>4
{{1,7},{2},{3,4,5,6}}=>4
{{1},{2,7},{3,4,5,6}}=>4
{{1},{2},{3,4,5,6,7}}=>6
{{1},{2},{3,4,5,6},{7}}=>6
{{1,7},{2},{3,4,5},{6}}=>4
{{1},{2,7},{3,4,5},{6}}=>4
{{1},{2},{3,4,5,7},{6}}=>4
{{1},{2},{3,4,5},{6,7}}=>6
{{1},{2},{3,4,5},{6},{7}}=>6
{{1,6,7},{2},{3,4},{5}}=>3
{{1,6},{2,7},{3,4},{5}}=>2
{{1,6},{2},{3,4,7},{5}}=>2
{{1,6},{2},{3,4},{5,7}}=>4
{{1,6},{2},{3,4},{5},{7}}=>4
{{1,7},{2,6},{3,4},{5}}=>2
{{1},{2,6,7},{3,4},{5}}=>3
{{1},{2,6},{3,4,7},{5}}=>2
{{1},{2,6},{3,4},{5,7}}=>4
{{1},{2,6},{3,4},{5},{7}}=>4
{{1,7},{2},{3,4,6},{5}}=>2
{{1},{2,7},{3,4,6},{5}}=>2
{{1},{2},{3,4,6,7},{5}}=>3
{{1},{2},{3,4,6},{5,7}}=>4
{{1},{2},{3,4,6},{5},{7}}=>4
{{1,7},{2},{3,4},{5,6}}=>4
{{1},{2,7},{3,4},{5,6}}=>4
{{1},{2},{3,4,7},{5,6}}=>4
{{1},{2},{3,4},{5,6,7}}=>6
{{1},{2},{3,4},{5,6},{7}}=>6
{{1,7},{2},{3,4},{5},{6}}=>4
{{1},{2,7},{3,4},{5},{6}}=>4
{{1},{2},{3,4,7},{5},{6}}=>4
{{1},{2},{3,4},{5,7},{6}}=>4
{{1},{2},{3,4},{5},{6,7}}=>6
{{1},{2},{3,4},{5},{6},{7}}=>6
{{1,5,6,7},{2},{3},{4}}=>2
{{1,5,6},{2,7},{3},{4}}=>1
{{1,5,6},{2},{3,7},{4}}=>1
{{1,5,6},{2},{3},{4,7}}=>3
{{1,5,6},{2},{3},{4},{7}}=>3
{{1,5,7},{2,6},{3},{4}}=>1
{{1,5},{2,6,7},{3},{4}}=>1
{{1,5},{2,6},{3,7},{4}}=>0
{{1,5},{2,6},{3},{4,7}}=>2
{{1,5},{2,6},{3},{4},{7}}=>2
{{1,5,7},{2},{3,6},{4}}=>1
{{1,5},{2,7},{3,6},{4}}=>0
{{1,5},{2},{3,6,7},{4}}=>1
{{1,5},{2},{3,6},{4,7}}=>2
{{1,5},{2},{3,6},{4},{7}}=>2
{{1,5,7},{2},{3},{4,6}}=>3
{{1,5},{2,7},{3},{4,6}}=>2
{{1,5},{2},{3,7},{4,6}}=>2
{{1,5},{2},{3},{4,6,7}}=>4
{{1,5},{2},{3},{4,6},{7}}=>4
{{1,5,7},{2},{3},{4},{6}}=>3
{{1,5},{2,7},{3},{4},{6}}=>2
{{1,5},{2},{3,7},{4},{6}}=>2
{{1,5},{2},{3},{4,7},{6}}=>2
{{1,5},{2},{3},{4},{6,7}}=>4
{{1,5},{2},{3},{4},{6},{7}}=>4
{{1,6,7},{2,5},{3},{4}}=>1
{{1,6},{2,5,7},{3},{4}}=>1
{{1,6},{2,5},{3,7},{4}}=>0
{{1,6},{2,5},{3},{4,7}}=>2
{{1,6},{2,5},{3},{4},{7}}=>2
{{1,7},{2,5,6},{3},{4}}=>1
{{1},{2,5,6,7},{3},{4}}=>2
{{1},{2,5,6},{3,7},{4}}=>1
{{1},{2,5,6},{3},{4,7}}=>3
{{1},{2,5,6},{3},{4},{7}}=>3
{{1,7},{2,5},{3,6},{4}}=>0
{{1},{2,5,7},{3,6},{4}}=>1
{{1},{2,5},{3,6,7},{4}}=>1
{{1},{2,5},{3,6},{4,7}}=>2
{{1},{2,5},{3,6},{4},{7}}=>2
{{1,7},{2,5},{3},{4,6}}=>2
{{1},{2,5,7},{3},{4,6}}=>3
{{1},{2,5},{3,7},{4,6}}=>2
{{1},{2,5},{3},{4,6,7}}=>4
{{1},{2,5},{3},{4,6},{7}}=>4
{{1,7},{2,5},{3},{4},{6}}=>2
{{1},{2,5,7},{3},{4},{6}}=>3
{{1},{2,5},{3,7},{4},{6}}=>2
{{1},{2,5},{3},{4,7},{6}}=>2
{{1},{2,5},{3},{4},{6,7}}=>4
{{1},{2,5},{3},{4},{6},{7}}=>4
{{1,6,7},{2},{3,5},{4}}=>1
{{1,6},{2,7},{3,5},{4}}=>0
{{1,6},{2},{3,5,7},{4}}=>1
{{1,6},{2},{3,5},{4,7}}=>2
{{1,6},{2},{3,5},{4},{7}}=>2
{{1,7},{2,6},{3,5},{4}}=>0
{{1},{2,6,7},{3,5},{4}}=>1
{{1},{2,6},{3,5,7},{4}}=>1
{{1},{2,6},{3,5},{4,7}}=>2
{{1},{2,6},{3,5},{4},{7}}=>2
{{1,7},{2},{3,5,6},{4}}=>1
{{1},{2,7},{3,5,6},{4}}=>1
{{1},{2},{3,5,6,7},{4}}=>2
{{1},{2},{3,5,6},{4,7}}=>3
{{1},{2},{3,5,6},{4},{7}}=>3
{{1,7},{2},{3,5},{4,6}}=>2
{{1},{2,7},{3,5},{4,6}}=>2
{{1},{2},{3,5,7},{4,6}}=>3
{{1},{2},{3,5},{4,6,7}}=>4
{{1},{2},{3,5},{4,6},{7}}=>4
{{1,7},{2},{3,5},{4},{6}}=>2
{{1},{2,7},{3,5},{4},{6}}=>2
{{1},{2},{3,5,7},{4},{6}}=>3
{{1},{2},{3,5},{4,7},{6}}=>2
{{1},{2},{3,5},{4},{6,7}}=>4
{{1},{2},{3,5},{4},{6},{7}}=>4
{{1,6,7},{2},{3},{4,5}}=>3
{{1,6},{2,7},{3},{4,5}}=>2
{{1,6},{2},{3,7},{4,5}}=>2
{{1,6},{2},{3},{4,5,7}}=>4
{{1,6},{2},{3},{4,5},{7}}=>4
{{1,7},{2,6},{3},{4,5}}=>2
{{1},{2,6,7},{3},{4,5}}=>3
{{1},{2,6},{3,7},{4,5}}=>2
{{1},{2,6},{3},{4,5,7}}=>4
{{1},{2,6},{3},{4,5},{7}}=>4
{{1,7},{2},{3,6},{4,5}}=>2
{{1},{2,7},{3,6},{4,5}}=>2
{{1},{2},{3,6,7},{4,5}}=>3
{{1},{2},{3,6},{4,5,7}}=>4
{{1},{2},{3,6},{4,5},{7}}=>4
{{1,7},{2},{3},{4,5,6}}=>4
{{1},{2,7},{3},{4,5,6}}=>4
{{1},{2},{3,7},{4,5,6}}=>4
{{1},{2},{3},{4,5,6,7}}=>6
{{1},{2},{3},{4,5,6},{7}}=>6
{{1,7},{2},{3},{4,5},{6}}=>4
{{1},{2,7},{3},{4,5},{6}}=>4
{{1},{2},{3,7},{4,5},{6}}=>4
{{1},{2},{3},{4,5,7},{6}}=>4
{{1},{2},{3},{4,5},{6,7}}=>6
{{1},{2},{3},{4,5},{6},{7}}=>6
{{1,6,7},{2},{3},{4},{5}}=>3
{{1,6},{2,7},{3},{4},{5}}=>2
{{1,6},{2},{3,7},{4},{5}}=>2
{{1,6},{2},{3},{4,7},{5}}=>2
{{1,6},{2},{3},{4},{5,7}}=>4
{{1,6},{2},{3},{4},{5},{7}}=>4
{{1,7},{2,6},{3},{4},{5}}=>2
{{1},{2,6,7},{3},{4},{5}}=>3
{{1},{2,6},{3,7},{4},{5}}=>2
{{1},{2,6},{3},{4,7},{5}}=>2
{{1},{2,6},{3},{4},{5,7}}=>4
{{1},{2,6},{3},{4},{5},{7}}=>4
{{1,7},{2},{3,6},{4},{5}}=>2
{{1},{2,7},{3,6},{4},{5}}=>2
{{1},{2},{3,6,7},{4},{5}}=>3
{{1},{2},{3,6},{4,7},{5}}=>2
{{1},{2},{3,6},{4},{5,7}}=>4
{{1},{2},{3,6},{4},{5},{7}}=>4
{{1,7},{2},{3},{4,6},{5}}=>2
{{1},{2,7},{3},{4,6},{5}}=>2
{{1},{2},{3,7},{4,6},{5}}=>2
{{1},{2},{3},{4,6,7},{5}}=>3
{{1},{2},{3},{4,6},{5,7}}=>4
{{1},{2},{3},{4,6},{5},{7}}=>4
{{1,7},{2},{3},{4},{5,6}}=>4
{{1},{2,7},{3},{4},{5,6}}=>4
{{1},{2},{3,7},{4},{5,6}}=>4
{{1},{2},{3},{4,7},{5,6}}=>4
{{1},{2},{3},{4},{5,6,7}}=>6
{{1},{2},{3},{4},{5,6},{7}}=>6
{{1,7},{2},{3},{4},{5},{6}}=>4
{{1},{2,7},{3},{4},{5},{6}}=>4
{{1},{2},{3,7},{4},{5},{6}}=>4
{{1},{2},{3},{4,7},{5},{6}}=>4
{{1},{2},{3},{4},{5,7},{6}}=>4
{{1},{2},{3},{4},{5},{6,7}}=>6
{{1},{2},{3},{4},{5},{6},{7}}=>6
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of ascent tops in the flattened set partition such that all smaller elements appear before.
Let $P$ be a set partition. The flattened set partition is the permutation obtained by sorting the set of blocks of $P$ according to their minimal element and the elements in each block in increasing order.
Given a set partition $P$, this statistic is the binary logarithm of the number of set partitions that flatten to the same permutation as $P$.
Let $P$ be a set partition. The flattened set partition is the permutation obtained by sorting the set of blocks of $P$ according to their minimal element and the elements in each block in increasing order.
Given a set partition $P$, this statistic is the binary logarithm of the number of set partitions that flatten to the same permutation as $P$.
References
[1] Nabawanda, O., Rakotondrajao, F. The sets of flattened partitions with forbidden patterns arXiv:2011.07304
Code
def flatten(P): return tuple(e for B in sorted(P, key=min) for e in sorted(list(B))) def statistic(P): p = flatten(P) return sum(1 for i in range(len(p)-1) if p[i] < p[i+1] and set(range(1, p[i+1])).issubset(sorted(p[:i+1])))
Created
Nov 17, 2020 at 11:00 by Martin Rubey
Updated
Nov 17, 2020 at 11:00 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!