edit this statistic or download as text // json
Identifier
Values
=>
Cc0020;cc-rep
([],1)=>1 ([],2)=>2 ([(0,1)],2)=>1 ([],3)=>2 ([(1,2)],3)=>2 ([(0,2),(1,2)],3)=>2 ([(0,1),(0,2),(1,2)],3)=>1 ([],4)=>2 ([(2,3)],4)=>3 ([(1,3),(2,3)],4)=>2 ([(0,3),(1,3),(2,3)],4)=>2 ([(0,3),(1,2)],4)=>2 ([(0,3),(1,2),(2,3)],4)=>2 ([(1,2),(1,3),(2,3)],4)=>3 ([(0,3),(1,2),(1,3),(2,3)],4)=>2 ([(0,2),(0,3),(1,2),(1,3)],4)=>2 ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>2 ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1 ([],5)=>2 ([(3,4)],5)=>3 ([(2,4),(3,4)],5)=>3 ([(1,4),(2,4),(3,4)],5)=>2 ([(0,4),(1,4),(2,4),(3,4)],5)=>2 ([(1,4),(2,3)],5)=>3 ([(1,4),(2,3),(3,4)],5)=>3 ([(0,1),(2,4),(3,4)],5)=>3 ([(2,3),(2,4),(3,4)],5)=>3 ([(0,4),(1,4),(2,3),(3,4)],5)=>3 ([(1,4),(2,3),(2,4),(3,4)],5)=>3 ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>3 ([(1,3),(1,4),(2,3),(2,4)],5)=>2 ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>2 ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3 ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>2 ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>2 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>2 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>2 ([(0,4),(1,3),(2,3),(2,4)],5)=>2 ([(0,1),(2,3),(2,4),(3,4)],5)=>3 ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>3 ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>2 ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>3 ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>2 ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>2 ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>3 ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>4 ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3 ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>2 ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)=>2 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>2 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>2 ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>1 ([],6)=>2 ([(4,5)],6)=>3 ([(3,5),(4,5)],6)=>3 ([(2,5),(3,5),(4,5)],6)=>3 ([(1,5),(2,5),(3,5),(4,5)],6)=>2 ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>2 ([(2,5),(3,4)],6)=>3 ([(2,5),(3,4),(4,5)],6)=>3 ([(1,2),(3,5),(4,5)],6)=>3 ([(3,4),(3,5),(4,5)],6)=>4 ([(1,5),(2,5),(3,4),(4,5)],6)=>3 ([(0,1),(2,5),(3,5),(4,5)],6)=>3 ([(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>3 ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(2,4),(2,5),(3,4),(3,5)],6)=>3 ([(0,5),(1,5),(2,4),(3,4)],6)=>3 ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>3 ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>3 ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>3 ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>3 ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>3 ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>3 ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>2 ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>2 ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>2 ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>2 ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,5),(1,4),(2,3)],6)=>3 ([(1,5),(2,4),(3,4),(3,5)],6)=>3 ([(0,1),(2,5),(3,4),(4,5)],6)=>3 ([(1,2),(3,4),(3,5),(4,5)],6)=>3 ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>3 ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>3 ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>3 ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>3 ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>3 ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>3 ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>3 ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>3 ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)=>3 ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>3 ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>3 ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>3 ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>3 ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)=>3 ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)=>4 ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)=>3 ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)=>3 ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>3 ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)=>3 ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)=>3 ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>3 ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>3 ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)=>3 ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>3 ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>3 ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>3 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>3 ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>3 ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>2 ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>3 ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>2 ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)=>2 ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)=>2 ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>2 ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>3 ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>3 ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>3 ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>3 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>2 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>2 ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)=>2 ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>3 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>2 ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>2 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)=>2 ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>2 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>2 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)=>3 ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)=>3 ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)=>3 ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>3 ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)=>3 ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>3 ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>2 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)=>3 ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>3 ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>3 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>3 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>2 ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>3 ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>3 ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>2 ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>3 ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>2 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>2 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The Prague dimension of a graph.
This is the least number of complete graphs such that the graph is an induced subgraph of their (categorical) product.
Put differently, this is the least number $n$ such that the graph can be embedded into $\mathbb N^n$, where two points are connected by an edge if and only if they differ in all coordinates.
References
[1] Lovász, L., Nešetřil, J., Pultr, A. On a product dimension of graphs MathSciNet:0584160
Code
def statistic(G, fast=True):
    """

    Proposition 2.3 of Lovász, László, J. Nešetšil, and Ales
    Pultr. "On a product dimension of graphs." Journal of
    Combinatorial Theory, Series B 29.1 (1980): 47-67.::

        sage: N = 7; l = [G for n in range(1, N) for G in graphs(n) if G.complement().chromatic_index() <= 1]
        sage: all(statistic(G) == G.complement().chromatic_index() + 1 for G in l)
        True
        sage: N = 6; l = [G for n in range(1, N) for G in graphs(n) if G.complement().chromatic_index() > 1]
        sage: all(statistic(G) <= G.complement().chromatic_index() for G in l)
        True
        sage: all(statistic(G) == G.complement().chromatic_index() for G in l if G.complement().is_triangle_free())
        True

    Proposition 3.6::

        sage: N = 8; l = [(k, n, graphs.CompleteGraph(n) + Graph(k)) for k in range(1, N) for n in range(2, N)]
        sage: all(statistic(G) == (n+1 if k > factorial(n-1) else n) for k, n, G in l)
        True

    TESTS::

        sage: N = 6; all(statistic(G) == statistic(G, False) for n in range(N) for G in graphs(n))
        True
    """
    if fast:
        Gc = G.complement()
        Gc_chi = Gc.chromatic_index()
        if Gc_chi <= 1:
            return Gc_chi + 1
        if Gc.is_triangle_free():
            return Gc_chi

        lG = sorted(G.connected_components_subgraphs(), key=lambda G: G.num_verts())
        if len(lG) > 1 and lG[-2].num_verts() == 1 and lG[-1].is_clique():
            if len(lG) - 1 <= factorial(lG[-1].num_verts()-1):
                return lG[-1].num_verts()
            return lG[-1].num_verts() + 1

    d = 0
    n = G.num_verts()
    K = graphs.CompleteGraph(n)
    H = K
    while True:
        d += 1
        if H.subgraph_search(G, induced=True) is not None:
            return d
        H = H.categorical_product(K)

Created
Nov 19, 2020 at 10:35 by Martin Rubey
Updated
Nov 19, 2020 at 15:52 by Martin Rubey