Identifier
Values
[] => ([],1) => ([],1) => 0
[[]] => ([(0,1)],2) => ([(0,1)],2) => 0
[[],[]] => ([(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 0
[[[]]] => ([(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 0
[[],[],[]] => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 0
[[],[[]]] => ([(0,3),(1,2),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
[[[]],[]] => ([(0,3),(1,2),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
[[[],[]]] => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 0
[[[[]]]] => ([(0,3),(1,2),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
[[],[],[],[]] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
[[],[],[[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[],[[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[],[[],[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[],[[[]]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[[]],[],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[[]],[[]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[[],[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[[[]]],[]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[[],[],[]]] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
[[[],[[]]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[[[]],[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[[[],[]]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[[[[]]]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[],[],[],[],[]] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
[[],[],[],[[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[],[],[[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[],[],[[],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[],[],[[[]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[],[[]],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[],[[],[]],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[],[[[]]],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[],[[],[],[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[],[[],[[]]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[],[[[]],[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[],[[[],[]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[],[[[[]]]]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[[]],[],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[[]],[],[[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[[]],[[]],[]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[[]],[[],[]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[[]],[[[]]]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[[],[]],[],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[[[]]],[],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[[],[]],[[]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[[[]]],[[]]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[[],[],[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[[],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[[[]],[]],[]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[[[],[]]],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[[[[]]]],[]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[[],[],[],[]]] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
[[[],[],[[]]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[[],[[]],[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[[],[[[]]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[[[]],[],[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[[[],[]],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[[[[]]],[]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[[[],[],[]]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[[[],[[]]]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[[[[]],[]]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[[[[],[]]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[[[[[]]]]]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[],[],[],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
[[],[],[],[],[[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[],[],[[]],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[],[],[[],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[[],[],[],[[[]]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,1),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[[],[],[[]],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[],[[]],[[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[[],[],[[],[]],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[[],[],[[[]]],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,1),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[[],[],[[],[],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[[],[],[[],[[]]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,4),(0,6),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 8
[[],[],[[[]],[]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,4),(0,6),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 8
[[],[],[[[],[]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => 8
[[],[],[[[[]]]]] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => ([(0,3),(0,5),(1,2),(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[[],[[]],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[[]],[],[[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[[],[[]],[[]],[]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[[],[[]],[[],[]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,4),(0,6),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 8
[[],[[]],[[[]]]] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => ([(0,4),(0,5),(1,2),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[[],[[],[]],[],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[[],[[[]]],[],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,1),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[[],[[],[]],[[]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,4),(0,6),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 8
[[],[[[]]],[[]]] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => ([(0,4),(0,5),(1,2),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[[],[[],[],[]],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[[],[[],[[]]],[]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,4),(0,6),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 8
[[],[[[]],[]],[]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,4),(0,6),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 8
[[],[[[],[]]],[]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => 8
[[],[[[[]]]],[]] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => ([(0,3),(0,5),(1,2),(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[[],[[],[],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[[],[],[[]]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[[],[[],[[]],[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[[],[[],[[],[]]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,4),(0,6),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 8
[[],[[],[[[]]]]] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => ([(0,4),(0,5),(1,2),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[[],[[[]],[],[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[[],[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 9
[[],[[[],[]],[]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,4),(0,6),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 8
>>> Load all 191 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of edges that can be added without increasing the maximal degree of a graph.
This statistic is (except for the degenerate case of two vertices) maximized by the star-graph on $n$ vertices, which has maximal degree $n-1$ and therefore has statistic $\binom{n-1}{2}$.
This statistic is (except for the degenerate case of two vertices) maximized by the star-graph on $n$ vertices, which has maximal degree $n-1$ and therefore has statistic $\binom{n-1}{2}$.
Map
square
Description
The square of a graph.
For a graph $G$, the square is the graph on the same set of vertices where two vertices are joined by an edge if there is a path in $G$ of length at most two between the two.
In other words, a vertex gets joint to its $2$-neighbourhood in G.
For a graph $G$, the square is the graph on the same set of vertices where two vertices are joined by an edge if there is a path in $G$ of length at most two between the two.
In other words, a vertex gets joint to its $2$-neighbourhood in G.
Map
to graph
Description
Return the undirected graph obtained from the tree nodes and edges.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!