Identifier
Values
[] => 1
[1] => 1
[2] => 2
[1,1] => 2
[3] => 3
[2,1] => 1
[1,1,1] => 3
[4] => 4
[3,1] => 2
[2,2] => 2
[2,1,1] => 2
[1,1,1,1] => 4
[5] => 5
[4,1] => 3
[3,2] => 4
[3,1,1] => 4
[2,2,1] => 4
[2,1,1,1] => 3
[1,1,1,1,1] => 5
[6] => 6
[5,1] => 4
[4,2] => 6
[4,1,1] => 6
[3,3] => 6
[3,2,1] => 1
[3,1,1,1] => 6
[2,2,2] => 6
[2,2,1,1] => 6
[2,1,1,1,1] => 4
[1,1,1,1,1,1] => 6
[7] => 7
[6,1] => 5
[5,2] => 8
[5,1,1] => 8
[4,3] => 9
[4,2,1] => 2
[4,1,1,1] => 9
[3,3,1] => 2
[3,2,2] => 2
[3,2,1,1] => 2
[3,1,1,1,1] => 8
[2,2,2,1] => 9
[2,2,1,1,1] => 8
[2,1,1,1,1,1] => 5
[1,1,1,1,1,1,1] => 7
[8] => 8
[7,1] => 6
[6,2] => 10
[6,1,1] => 10
[5,3] => 12
[5,2,1] => 3
[5,1,1,1] => 12
[4,4] => 12
[4,3,1] => 4
[4,2,2] => 4
[4,2,1,1] => 4
[4,1,1,1,1] => 12
[3,3,2] => 4
[3,3,1,1] => 4
[3,2,2,1] => 4
[3,2,1,1,1] => 3
[3,1,1,1,1,1] => 10
[2,2,2,2] => 12
[2,2,2,1,1] => 12
[2,2,1,1,1,1] => 10
[2,1,1,1,1,1,1] => 6
[1,1,1,1,1,1,1,1] => 8
[9] => 9
[8,1] => 7
[7,2] => 12
[7,1,1] => 12
[6,3] => 15
[6,2,1] => 4
[6,1,1,1] => 15
[5,4] => 16
[5,3,1] => 6
[5,2,2] => 6
[5,2,1,1] => 6
[5,1,1,1,1] => 16
[4,4,1] => 6
[4,3,2] => 8
[4,3,1,1] => 8
[4,2,2,1] => 8
[4,2,1,1,1] => 6
[4,1,1,1,1,1] => 15
[3,3,3] => 6
[3,3,2,1] => 8
[3,3,1,1,1] => 6
[3,2,2,2] => 6
[3,2,2,1,1] => 6
[3,2,1,1,1,1] => 4
[3,1,1,1,1,1,1] => 12
[2,2,2,2,1] => 16
[2,2,2,1,1,1] => 15
[2,2,1,1,1,1,1] => 12
[2,1,1,1,1,1,1,1] => 7
[1,1,1,1,1,1,1,1,1] => 9
[10] => 10
[9,1] => 8
[8,2] => 14
[8,1,1] => 14
>>> Load all 1212 entries. <<<[7,3] => 18
[7,2,1] => 5
[7,1,1,1] => 18
[6,4] => 20
[6,3,1] => 8
[6,2,2] => 8
[6,2,1,1] => 8
[6,1,1,1,1] => 20
[5,5] => 20
[5,4,1] => 9
[5,3,2] => 12
[5,3,1,1] => 12
[5,2,2,1] => 12
[5,2,1,1,1] => 9
[5,1,1,1,1,1] => 20
[4,4,2] => 12
[4,4,1,1] => 12
[4,3,3] => 12
[4,3,2,1] => 1
[4,3,1,1,1] => 12
[4,2,2,2] => 12
[4,2,2,1,1] => 12
[4,2,1,1,1,1] => 8
[4,1,1,1,1,1,1] => 18
[3,3,3,1] => 12
[3,3,2,2] => 12
[3,3,2,1,1] => 12
[3,3,1,1,1,1] => 8
[3,2,2,2,1] => 9
[3,2,2,1,1,1] => 8
[3,2,1,1,1,1,1] => 5
[3,1,1,1,1,1,1,1] => 14
[2,2,2,2,2] => 20
[2,2,2,2,1,1] => 20
[2,2,2,1,1,1,1] => 18
[2,2,1,1,1,1,1,1] => 14
[2,1,1,1,1,1,1,1,1] => 8
[1,1,1,1,1,1,1,1,1,1] => 10
[11] => 11
[10,1] => 9
[9,2] => 16
[9,1,1] => 16
[8,3] => 21
[8,2,1] => 6
[8,1,1,1] => 21
[7,4] => 24
[7,3,1] => 10
[7,2,2] => 10
[7,2,1,1] => 10
[7,1,1,1,1] => 24
[6,5] => 25
[6,4,1] => 12
[6,3,2] => 16
[6,3,1,1] => 16
[6,2,2,1] => 16
[6,2,1,1,1] => 12
[6,1,1,1,1,1] => 25
[5,5,1] => 12
[5,4,2] => 18
[5,4,1,1] => 18
[5,3,3] => 18
[5,3,2,1] => 2
[5,3,1,1,1] => 18
[5,2,2,2] => 18
[5,2,2,1,1] => 18
[5,2,1,1,1,1] => 12
[5,1,1,1,1,1,1] => 24
[4,4,3] => 18
[4,4,2,1] => 2
[4,4,1,1,1] => 18
[4,3,3,1] => 2
[4,3,2,2] => 2
[4,3,2,1,1] => 2
[4,3,1,1,1,1] => 16
[4,2,2,2,1] => 18
[4,2,2,1,1,1] => 16
[4,2,1,1,1,1,1] => 10
[4,1,1,1,1,1,1,1] => 21
[3,3,3,2] => 18
[3,3,3,1,1] => 18
[3,3,2,2,1] => 18
[3,3,2,1,1,1] => 16
[3,3,1,1,1,1,1] => 10
[3,2,2,2,2] => 12
[3,2,2,2,1,1] => 12
[3,2,2,1,1,1,1] => 10
[3,2,1,1,1,1,1,1] => 6
[3,1,1,1,1,1,1,1,1] => 16
[2,2,2,2,2,1] => 25
[2,2,2,2,1,1,1] => 24
[2,2,2,1,1,1,1,1] => 21
[2,2,1,1,1,1,1,1,1] => 16
[2,1,1,1,1,1,1,1,1,1] => 9
[1,1,1,1,1,1,1,1,1,1,1] => 11
[12] => 12
[11,1] => 10
[10,2] => 18
[10,1,1] => 18
[9,3] => 24
[9,2,1] => 7
[9,1,1,1] => 24
[8,4] => 28
[8,3,1] => 12
[8,2,2] => 12
[8,2,1,1] => 12
[8,1,1,1,1] => 28
[7,5] => 30
[7,4,1] => 15
[7,3,2] => 20
[7,3,1,1] => 20
[7,2,2,1] => 20
[7,2,1,1,1] => 15
[7,1,1,1,1,1] => 30
[6,6] => 30
[6,5,1] => 16
[6,4,2] => 24
[6,4,1,1] => 24
[6,3,3] => 24
[6,3,2,1] => 3
[6,3,1,1,1] => 24
[6,2,2,2] => 24
[6,2,2,1,1] => 24
[6,2,1,1,1,1] => 16
[6,1,1,1,1,1,1] => 30
[5,5,2] => 24
[5,5,1,1] => 24
[5,4,3] => 27
[5,4,2,1] => 4
[5,4,1,1,1] => 27
[5,3,3,1] => 4
[5,3,2,2] => 4
[5,3,2,1,1] => 4
[5,3,1,1,1,1] => 24
[5,2,2,2,1] => 27
[5,2,2,1,1,1] => 24
[5,2,1,1,1,1,1] => 15
[5,1,1,1,1,1,1,1] => 28
[4,4,4] => 24
[4,4,3,1] => 4
[4,4,2,2] => 4
[4,4,2,1,1] => 4
[4,4,1,1,1,1] => 24
[4,3,3,2] => 4
[4,3,3,1,1] => 4
[4,3,2,2,1] => 4
[4,3,2,1,1,1] => 3
[4,3,1,1,1,1,1] => 20
[4,2,2,2,2] => 24
[4,2,2,2,1,1] => 24
[4,2,2,1,1,1,1] => 20
[4,2,1,1,1,1,1,1] => 12
[4,1,1,1,1,1,1,1,1] => 24
[3,3,3,3] => 24
[3,3,3,2,1] => 27
[3,3,3,1,1,1] => 24
[3,3,2,2,2] => 24
[3,3,2,2,1,1] => 24
[3,3,2,1,1,1,1] => 20
[3,3,1,1,1,1,1,1] => 12
[3,2,2,2,2,1] => 16
[3,2,2,2,1,1,1] => 15
[3,2,2,1,1,1,1,1] => 12
[3,2,1,1,1,1,1,1,1] => 7
[3,1,1,1,1,1,1,1,1,1] => 18
[2,2,2,2,2,2] => 30
[2,2,2,2,2,1,1] => 30
[2,2,2,2,1,1,1,1] => 28
[2,2,2,1,1,1,1,1,1] => 24
[2,2,1,1,1,1,1,1,1,1] => 18
[2,1,1,1,1,1,1,1,1,1,1] => 10
[1,1,1,1,1,1,1,1,1,1,1,1] => 12
[13] => 13
[12,1] => 11
[11,2] => 20
[11,1,1] => 20
[10,3] => 27
[10,2,1] => 8
[10,1,1,1] => 27
[9,4] => 32
[9,3,1] => 14
[9,2,2] => 14
[9,2,1,1] => 14
[9,1,1,1,1] => 32
[8,5] => 35
[8,4,1] => 18
[8,3,2] => 24
[8,3,1,1] => 24
[8,2,2,1] => 24
[8,2,1,1,1] => 18
[8,1,1,1,1,1] => 35
[7,6] => 36
[7,5,1] => 20
[7,4,2] => 30
[7,4,1,1] => 30
[7,3,3] => 30
[7,3,2,1] => 4
[7,3,1,1,1] => 30
[7,2,2,2] => 30
[7,2,2,1,1] => 30
[7,2,1,1,1,1] => 20
[7,1,1,1,1,1,1] => 36
[6,6,1] => 20
[6,5,2] => 32
[6,5,1,1] => 32
[6,4,3] => 36
[6,4,2,1] => 6
[6,4,1,1,1] => 36
[6,3,3,1] => 6
[6,3,2,2] => 6
[6,3,2,1,1] => 6
[6,3,1,1,1,1] => 32
[6,2,2,2,1] => 36
[6,2,2,1,1,1] => 32
[6,2,1,1,1,1,1] => 20
[6,1,1,1,1,1,1,1] => 35
[5,5,3] => 36
[5,5,2,1] => 6
[5,5,1,1,1] => 36
[5,4,4] => 36
[5,4,3,1] => 8
[5,4,2,2] => 8
[5,4,2,1,1] => 8
[5,4,1,1,1,1] => 36
[5,3,3,2] => 8
[5,3,3,1,1] => 8
[5,3,2,2,1] => 8
[5,3,2,1,1,1] => 6
[5,3,1,1,1,1,1] => 30
[5,2,2,2,2] => 36
[5,2,2,2,1,1] => 36
[5,2,2,1,1,1,1] => 30
[5,2,1,1,1,1,1,1] => 18
[5,1,1,1,1,1,1,1,1] => 32
[4,4,4,1] => 6
[4,4,3,2] => 8
[4,4,3,1,1] => 8
[4,4,2,2,1] => 8
[4,4,2,1,1,1] => 6
[4,4,1,1,1,1,1] => 30
[4,3,3,3] => 6
[4,3,3,2,1] => 8
[4,3,3,1,1,1] => 6
[4,3,2,2,2] => 6
[4,3,2,2,1,1] => 6
[4,3,2,1,1,1,1] => 4
[4,3,1,1,1,1,1,1] => 24
[4,2,2,2,2,1] => 32
[4,2,2,2,1,1,1] => 30
[4,2,2,1,1,1,1,1] => 24
[4,2,1,1,1,1,1,1,1] => 14
[4,1,1,1,1,1,1,1,1,1] => 27
[3,3,3,3,1] => 36
[3,3,3,2,2] => 36
[3,3,3,2,1,1] => 36
[3,3,3,1,1,1,1] => 30
[3,3,2,2,2,1] => 32
[3,3,2,2,1,1,1] => 30
[3,3,2,1,1,1,1,1] => 24
[3,3,1,1,1,1,1,1,1] => 14
[3,2,2,2,2,2] => 20
[3,2,2,2,2,1,1] => 20
[3,2,2,2,1,1,1,1] => 18
[3,2,2,1,1,1,1,1,1] => 14
[3,2,1,1,1,1,1,1,1,1] => 8
[3,1,1,1,1,1,1,1,1,1,1] => 20
[2,2,2,2,2,2,1] => 36
[2,2,2,2,2,1,1,1] => 35
[2,2,2,2,1,1,1,1,1] => 32
[2,2,2,1,1,1,1,1,1,1] => 27
[2,2,1,1,1,1,1,1,1,1,1] => 20
[2,1,1,1,1,1,1,1,1,1,1,1] => 11
[1,1,1,1,1,1,1,1,1,1,1,1,1] => 13
[14] => 14
[13,1] => 12
[12,2] => 22
[12,1,1] => 22
[11,3] => 30
[11,2,1] => 9
[11,1,1,1] => 30
[10,4] => 36
[10,3,1] => 16
[10,2,2] => 16
[10,2,1,1] => 16
[10,1,1,1,1] => 36
[9,5] => 40
[9,4,1] => 21
[9,3,2] => 28
[9,3,1,1] => 28
[9,2,2,1] => 28
[9,2,1,1,1] => 21
[9,1,1,1,1,1] => 40
[8,6] => 42
[8,5,1] => 24
[8,4,2] => 36
[8,4,1,1] => 36
[8,3,3] => 36
[8,3,2,1] => 5
[8,3,1,1,1] => 36
[8,2,2,2] => 36
[8,2,2,1,1] => 36
[8,2,1,1,1,1] => 24
[8,1,1,1,1,1,1] => 42
[7,7] => 42
[7,6,1] => 25
[7,5,2] => 40
[7,5,1,1] => 40
[7,4,3] => 45
[7,4,2,1] => 8
[7,4,1,1,1] => 45
[7,3,3,1] => 8
[7,3,2,2] => 8
[7,3,2,1,1] => 8
[7,3,1,1,1,1] => 40
[7,2,2,2,1] => 45
[7,2,2,1,1,1] => 40
[7,2,1,1,1,1,1] => 25
[7,1,1,1,1,1,1,1] => 42
[6,6,2] => 40
[6,6,1,1] => 40
[6,5,3] => 48
[6,5,2,1] => 9
[6,5,1,1,1] => 48
[6,4,4] => 48
[6,4,3,1] => 12
[6,4,2,2] => 12
[6,4,2,1,1] => 12
[6,4,1,1,1,1] => 48
[6,3,3,2] => 12
[6,3,3,1,1] => 12
[6,3,2,2,1] => 12
[6,3,2,1,1,1] => 9
[6,3,1,1,1,1,1] => 40
[6,2,2,2,2] => 48
[6,2,2,2,1,1] => 48
[6,2,2,1,1,1,1] => 40
[6,2,1,1,1,1,1,1] => 24
[6,1,1,1,1,1,1,1,1] => 40
[5,5,4] => 48
[5,5,3,1] => 12
[5,5,2,2] => 12
[5,5,2,1,1] => 12
[5,5,1,1,1,1] => 48
[5,4,4,1] => 12
[5,4,3,2] => 16
[5,4,3,1,1] => 16
[5,4,2,2,1] => 16
[5,4,2,1,1,1] => 12
[5,4,1,1,1,1,1] => 45
[5,3,3,3] => 12
[5,3,3,2,1] => 16
[5,3,3,1,1,1] => 12
[5,3,2,2,2] => 12
[5,3,2,2,1,1] => 12
[5,3,2,1,1,1,1] => 8
[5,3,1,1,1,1,1,1] => 36
[5,2,2,2,2,1] => 48
[5,2,2,2,1,1,1] => 45
[5,2,2,1,1,1,1,1] => 36
[5,2,1,1,1,1,1,1,1] => 21
[5,1,1,1,1,1,1,1,1,1] => 36
[4,4,4,2] => 12
[4,4,4,1,1] => 12
[4,4,3,3] => 12
[4,4,3,2,1] => 16
[4,4,3,1,1,1] => 12
[4,4,2,2,2] => 12
[4,4,2,2,1,1] => 12
[4,4,2,1,1,1,1] => 8
[4,4,1,1,1,1,1,1] => 36
[4,3,3,3,1] => 12
[4,3,3,2,2] => 12
[4,3,3,2,1,1] => 12
[4,3,3,1,1,1,1] => 8
[4,3,2,2,2,1] => 9
[4,3,2,2,1,1,1] => 8
[4,3,2,1,1,1,1,1] => 5
[4,3,1,1,1,1,1,1,1] => 28
[4,2,2,2,2,2] => 40
[4,2,2,2,2,1,1] => 40
[4,2,2,2,1,1,1,1] => 36
[4,2,2,1,1,1,1,1,1] => 28
[4,2,1,1,1,1,1,1,1,1] => 16
[4,1,1,1,1,1,1,1,1,1,1] => 30
[3,3,3,3,2] => 48
[3,3,3,3,1,1] => 48
[3,3,3,2,2,1] => 48
[3,3,3,2,1,1,1] => 45
[3,3,3,1,1,1,1,1] => 36
[3,3,2,2,2,2] => 40
[3,3,2,2,2,1,1] => 40
[3,3,2,2,1,1,1,1] => 36
[3,3,2,1,1,1,1,1,1] => 28
[3,3,1,1,1,1,1,1,1,1] => 16
[3,2,2,2,2,2,1] => 25
[3,2,2,2,2,1,1,1] => 24
[3,2,2,2,1,1,1,1,1] => 21
[3,2,2,1,1,1,1,1,1,1] => 16
[3,2,1,1,1,1,1,1,1,1,1] => 9
[3,1,1,1,1,1,1,1,1,1,1,1] => 22
[2,2,2,2,2,2,2] => 42
[2,2,2,2,2,2,1,1] => 42
[2,2,2,2,2,1,1,1,1] => 40
[2,2,2,2,1,1,1,1,1,1] => 36
[2,2,2,1,1,1,1,1,1,1,1] => 30
[2,2,1,1,1,1,1,1,1,1,1,1] => 22
[2,1,1,1,1,1,1,1,1,1,1,1,1] => 12
[1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 14
[15] => 15
[14,1] => 13
[13,2] => 24
[13,1,1] => 24
[12,3] => 33
[12,2,1] => 10
[12,1,1,1] => 33
[11,4] => 40
[11,3,1] => 18
[11,2,2] => 18
[11,2,1,1] => 18
[11,1,1,1,1] => 40
[10,5] => 45
[10,4,1] => 24
[10,3,2] => 32
[10,3,1,1] => 32
[10,2,2,1] => 32
[10,2,1,1,1] => 24
[10,1,1,1,1,1] => 45
[9,6] => 48
[9,5,1] => 28
[9,4,2] => 42
[9,4,1,1] => 42
[9,3,3] => 42
[9,3,2,1] => 6
[9,3,1,1,1] => 42
[9,2,2,2] => 42
[9,2,2,1,1] => 42
[9,2,1,1,1,1] => 28
[9,1,1,1,1,1,1] => 48
[8,7] => 49
[8,6,1] => 30
[8,5,2] => 48
[8,5,1,1] => 48
[8,4,3] => 54
[8,4,2,1] => 10
[8,4,1,1,1] => 54
[8,3,3,1] => 10
[8,3,2,2] => 10
[8,3,2,1,1] => 10
[8,3,1,1,1,1] => 48
[8,2,2,2,1] => 54
[8,2,2,1,1,1] => 48
[8,2,1,1,1,1,1] => 30
[8,1,1,1,1,1,1,1] => 49
[7,7,1] => 30
[7,6,2] => 50
[7,6,1,1] => 50
[7,5,3] => 60
[7,5,2,1] => 12
[7,5,1,1,1] => 60
[7,4,4] => 60
[7,4,3,1] => 16
[7,4,2,2] => 16
[7,4,2,1,1] => 16
[7,4,1,1,1,1] => 60
[7,3,3,2] => 16
[7,3,3,1,1] => 16
[7,3,2,2,1] => 16
[7,3,2,1,1,1] => 12
[7,3,1,1,1,1,1] => 50
[7,2,2,2,2] => 60
[7,2,2,2,1,1] => 60
[7,2,2,1,1,1,1] => 50
[7,2,1,1,1,1,1,1] => 30
[7,1,1,1,1,1,1,1,1] => 48
[6,6,3] => 60
[6,6,2,1] => 12
[6,6,1,1,1] => 60
[6,5,4] => 64
[6,5,3,1] => 18
[6,5,2,2] => 18
[6,5,2,1,1] => 18
[6,5,1,1,1,1] => 64
[6,4,4,1] => 18
[6,4,3,2] => 24
[6,4,3,1,1] => 24
[6,4,2,2,1] => 24
[6,4,2,1,1,1] => 18
[6,4,1,1,1,1,1] => 60
[6,3,3,3] => 18
[6,3,3,2,1] => 24
[6,3,3,1,1,1] => 18
[6,3,2,2,2] => 18
[6,3,2,2,1,1] => 18
[6,3,2,1,1,1,1] => 12
[6,3,1,1,1,1,1,1] => 48
[6,2,2,2,2,1] => 64
[6,2,2,2,1,1,1] => 60
[6,2,2,1,1,1,1,1] => 48
[6,2,1,1,1,1,1,1,1] => 28
[6,1,1,1,1,1,1,1,1,1] => 45
[5,5,5] => 60
[5,5,4,1] => 18
[5,5,3,2] => 24
[5,5,3,1,1] => 24
[5,5,2,2,1] => 24
[5,5,2,1,1,1] => 18
[5,5,1,1,1,1,1] => 60
[5,4,4,2] => 24
[5,4,4,1,1] => 24
[5,4,3,3] => 24
[5,4,3,2,1] => 1
[5,4,3,1,1,1] => 24
[5,4,2,2,2] => 24
[5,4,2,2,1,1] => 24
[5,4,2,1,1,1,1] => 16
[5,4,1,1,1,1,1,1] => 54
[5,3,3,3,1] => 24
[5,3,3,2,2] => 24
[5,3,3,2,1,1] => 24
[5,3,3,1,1,1,1] => 16
[5,3,2,2,2,1] => 18
[5,3,2,2,1,1,1] => 16
[5,3,2,1,1,1,1,1] => 10
[5,3,1,1,1,1,1,1,1] => 42
[5,2,2,2,2,2] => 60
[5,2,2,2,2,1,1] => 60
[5,2,2,2,1,1,1,1] => 54
[5,2,2,1,1,1,1,1,1] => 42
[5,2,1,1,1,1,1,1,1,1] => 24
[5,1,1,1,1,1,1,1,1,1,1] => 40
[4,4,4,3] => 18
[4,4,4,2,1] => 24
[4,4,4,1,1,1] => 18
[4,4,3,3,1] => 24
[4,4,3,2,2] => 24
[4,4,3,2,1,1] => 24
[4,4,3,1,1,1,1] => 16
[4,4,2,2,2,1] => 18
[4,4,2,2,1,1,1] => 16
[4,4,2,1,1,1,1,1] => 10
[4,4,1,1,1,1,1,1,1] => 42
[4,3,3,3,2] => 18
[4,3,3,3,1,1] => 18
[4,3,3,2,2,1] => 18
[4,3,3,2,1,1,1] => 16
[4,3,3,1,1,1,1,1] => 10
[4,3,2,2,2,2] => 12
[4,3,2,2,2,1,1] => 12
[4,3,2,2,1,1,1,1] => 10
[4,3,2,1,1,1,1,1,1] => 6
[4,3,1,1,1,1,1,1,1,1] => 32
[4,2,2,2,2,2,1] => 50
[4,2,2,2,2,1,1,1] => 48
[4,2,2,2,1,1,1,1,1] => 42
[4,2,2,1,1,1,1,1,1,1] => 32
[4,2,1,1,1,1,1,1,1,1,1] => 18
[4,1,1,1,1,1,1,1,1,1,1,1] => 33
[3,3,3,3,3] => 60
[3,3,3,3,2,1] => 64
[3,3,3,3,1,1,1] => 60
[3,3,3,2,2,2] => 60
[3,3,3,2,2,1,1] => 60
[3,3,3,2,1,1,1,1] => 54
[3,3,3,1,1,1,1,1,1] => 42
[3,3,2,2,2,2,1] => 50
[3,3,2,2,2,1,1,1] => 48
[3,3,2,2,1,1,1,1,1] => 42
[3,3,2,1,1,1,1,1,1,1] => 32
[3,3,1,1,1,1,1,1,1,1,1] => 18
[3,2,2,2,2,2,2] => 30
[3,2,2,2,2,2,1,1] => 30
[3,2,2,2,2,1,1,1,1] => 28
[3,2,2,2,1,1,1,1,1,1] => 24
[3,2,2,1,1,1,1,1,1,1,1] => 18
[3,2,1,1,1,1,1,1,1,1,1,1] => 10
[3,1,1,1,1,1,1,1,1,1,1,1,1] => 24
[2,2,2,2,2,2,2,1] => 49
[2,2,2,2,2,2,1,1,1] => 48
[2,2,2,2,2,1,1,1,1,1] => 45
[2,2,2,2,1,1,1,1,1,1,1] => 40
[2,2,2,1,1,1,1,1,1,1,1,1] => 33
[2,2,1,1,1,1,1,1,1,1,1,1,1] => 24
[2,1,1,1,1,1,1,1,1,1,1,1,1,1] => 13
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 15
[16] => 16
[15,1] => 14
[14,2] => 26
[14,1,1] => 26
[13,3] => 36
[13,2,1] => 11
[13,1,1,1] => 36
[12,4] => 44
[12,3,1] => 20
[12,2,2] => 20
[12,2,1,1] => 20
[12,1,1,1,1] => 44
[11,5] => 50
[11,4,1] => 27
[11,3,2] => 36
[11,3,1,1] => 36
[11,2,2,1] => 36
[11,2,1,1,1] => 27
[11,1,1,1,1,1] => 50
[10,6] => 54
[10,5,1] => 32
[10,4,2] => 48
[10,4,1,1] => 48
[10,3,3] => 48
[10,3,2,1] => 7
[10,3,1,1,1] => 48
[10,2,2,2] => 48
[10,2,2,1,1] => 48
[10,2,1,1,1,1] => 32
[10,1,1,1,1,1,1] => 54
[9,7] => 56
[9,6,1] => 35
[9,5,2] => 56
[9,5,1,1] => 56
[9,4,3] => 63
[9,4,2,1] => 12
[9,4,1,1,1] => 63
[9,3,3,1] => 12
[9,3,2,2] => 12
[9,3,2,1,1] => 12
[9,3,1,1,1,1] => 56
[9,2,2,2,1] => 63
[9,2,2,1,1,1] => 56
[9,2,1,1,1,1,1] => 35
[9,1,1,1,1,1,1,1] => 56
[8,8] => 56
[8,7,1] => 36
[8,6,2] => 60
[8,6,1,1] => 60
[8,5,3] => 72
[8,5,2,1] => 15
[8,5,1,1,1] => 72
[8,4,4] => 72
[8,4,3,1] => 20
[8,4,2,2] => 20
[8,4,2,1,1] => 20
[8,4,1,1,1,1] => 72
[8,3,3,2] => 20
[8,3,3,1,1] => 20
[8,3,2,2,1] => 20
[8,3,2,1,1,1] => 15
[8,3,1,1,1,1,1] => 60
[8,2,2,2,2] => 72
[8,2,2,2,1,1] => 72
[8,2,2,1,1,1,1] => 60
[8,2,1,1,1,1,1,1] => 36
[8,1,1,1,1,1,1,1,1] => 56
[7,7,2] => 60
[7,7,1,1] => 60
[7,6,3] => 75
[7,6,2,1] => 16
[7,6,1,1,1] => 75
[7,5,4] => 80
[7,5,3,1] => 24
[7,5,2,2] => 24
[7,5,2,1,1] => 24
[7,5,1,1,1,1] => 80
[7,4,4,1] => 24
[7,4,3,2] => 32
[7,4,3,1,1] => 32
[7,4,2,2,1] => 32
[7,4,2,1,1,1] => 24
[7,4,1,1,1,1,1] => 75
[7,3,3,3] => 24
[7,3,3,2,1] => 32
[7,3,3,1,1,1] => 24
[7,3,2,2,2] => 24
[7,3,2,2,1,1] => 24
[7,3,2,1,1,1,1] => 16
[7,3,1,1,1,1,1,1] => 60
[7,2,2,2,2,1] => 80
[7,2,2,2,1,1,1] => 75
[7,2,2,1,1,1,1,1] => 60
[7,2,1,1,1,1,1,1,1] => 35
[7,1,1,1,1,1,1,1,1,1] => 54
[6,6,4] => 80
[6,6,3,1] => 24
[6,6,2,2] => 24
[6,6,2,1,1] => 24
[6,6,1,1,1,1] => 80
[6,5,5] => 80
[6,5,4,1] => 27
[6,5,3,2] => 36
[6,5,3,1,1] => 36
[6,5,2,2,1] => 36
[6,5,2,1,1,1] => 27
[6,5,1,1,1,1,1] => 80
[6,4,4,2] => 36
[6,4,4,1,1] => 36
[6,4,3,3] => 36
[6,4,3,2,1] => 2
[6,4,3,1,1,1] => 36
[6,4,2,2,2] => 36
[6,4,2,2,1,1] => 36
[6,4,2,1,1,1,1] => 24
[6,4,1,1,1,1,1,1] => 72
[6,3,3,3,1] => 36
[6,3,3,2,2] => 36
[6,3,3,2,1,1] => 36
[6,3,3,1,1,1,1] => 24
[6,3,2,2,2,1] => 27
[6,3,2,2,1,1,1] => 24
[6,3,2,1,1,1,1,1] => 15
[6,3,1,1,1,1,1,1,1] => 56
[6,2,2,2,2,2] => 80
[6,2,2,2,2,1,1] => 80
[6,2,2,2,1,1,1,1] => 72
[6,2,2,1,1,1,1,1,1] => 56
[6,2,1,1,1,1,1,1,1,1] => 32
[6,1,1,1,1,1,1,1,1,1,1] => 50
[5,5,5,1] => 24
[5,5,4,2] => 36
[5,5,4,1,1] => 36
[5,5,3,3] => 36
[5,5,3,2,1] => 2
[5,5,3,1,1,1] => 36
[5,5,2,2,2] => 36
[5,5,2,2,1,1] => 36
[5,5,2,1,1,1,1] => 24
[5,5,1,1,1,1,1,1] => 72
[5,4,4,3] => 36
[5,4,4,2,1] => 2
[5,4,4,1,1,1] => 36
[5,4,3,3,1] => 2
[5,4,3,2,2] => 2
[5,4,3,2,1,1] => 2
[5,4,3,1,1,1,1] => 32
[5,4,2,2,2,1] => 36
[5,4,2,2,1,1,1] => 32
[5,4,2,1,1,1,1,1] => 20
[5,4,1,1,1,1,1,1,1] => 63
[5,3,3,3,2] => 36
[5,3,3,3,1,1] => 36
[5,3,3,2,2,1] => 36
[5,3,3,2,1,1,1] => 32
[5,3,3,1,1,1,1,1] => 20
[5,3,2,2,2,2] => 24
[5,3,2,2,2,1,1] => 24
[5,3,2,2,1,1,1,1] => 20
[5,3,2,1,1,1,1,1,1] => 12
[5,3,1,1,1,1,1,1,1,1] => 48
[5,2,2,2,2,2,1] => 75
[5,2,2,2,2,1,1,1] => 72
[5,2,2,2,1,1,1,1,1] => 63
[5,2,2,1,1,1,1,1,1,1] => 48
[5,2,1,1,1,1,1,1,1,1,1] => 27
[5,1,1,1,1,1,1,1,1,1,1,1] => 44
[4,4,4,4] => 24
[4,4,4,3,1] => 36
[4,4,4,2,2] => 36
[4,4,4,2,1,1] => 36
[4,4,4,1,1,1,1] => 24
[4,4,3,3,2] => 36
[4,4,3,3,1,1] => 36
[4,4,3,2,2,1] => 36
[4,4,3,2,1,1,1] => 32
[4,4,3,1,1,1,1,1] => 20
[4,4,2,2,2,2] => 24
[4,4,2,2,2,1,1] => 24
[4,4,2,2,1,1,1,1] => 20
[4,4,2,1,1,1,1,1,1] => 12
[4,4,1,1,1,1,1,1,1,1] => 48
[4,3,3,3,3] => 24
[4,3,3,3,2,1] => 27
[4,3,3,3,1,1,1] => 24
[4,3,3,2,2,2] => 24
[4,3,3,2,2,1,1] => 24
[4,3,3,2,1,1,1,1] => 20
[4,3,3,1,1,1,1,1,1] => 12
[4,3,2,2,2,2,1] => 16
[4,3,2,2,2,1,1,1] => 15
[4,3,2,2,1,1,1,1,1] => 12
[4,3,2,1,1,1,1,1,1,1] => 7
[4,3,1,1,1,1,1,1,1,1,1] => 36
[4,2,2,2,2,2,2] => 60
[4,2,2,2,2,2,1,1] => 60
[4,2,2,2,2,1,1,1,1] => 56
[4,2,2,2,1,1,1,1,1,1] => 48
[4,2,2,1,1,1,1,1,1,1,1] => 36
[4,2,1,1,1,1,1,1,1,1,1,1] => 20
[4,1,1,1,1,1,1,1,1,1,1,1,1] => 36
[3,3,3,3,3,1] => 80
[3,3,3,3,2,2] => 80
[3,3,3,3,2,1,1] => 80
[3,3,3,3,1,1,1,1] => 72
[3,3,3,2,2,2,1] => 75
[3,3,3,2,2,1,1,1] => 72
[3,3,3,2,1,1,1,1,1] => 63
[3,3,3,1,1,1,1,1,1,1] => 48
[3,3,2,2,2,2,2] => 60
[3,3,2,2,2,2,1,1] => 60
[3,3,2,2,2,1,1,1,1] => 56
[3,3,2,2,1,1,1,1,1,1] => 48
[3,3,2,1,1,1,1,1,1,1,1] => 36
[3,3,1,1,1,1,1,1,1,1,1,1] => 20
[3,2,2,2,2,2,2,1] => 36
[3,2,2,2,2,2,1,1,1] => 35
[3,2,2,2,2,1,1,1,1,1] => 32
[3,2,2,2,1,1,1,1,1,1,1] => 27
[3,2,2,1,1,1,1,1,1,1,1,1] => 20
[3,2,1,1,1,1,1,1,1,1,1,1,1] => 11
[3,1,1,1,1,1,1,1,1,1,1,1,1,1] => 26
[2,2,2,2,2,2,2,2] => 56
[2,2,2,2,2,2,2,1,1] => 56
[2,2,2,2,2,2,1,1,1,1] => 54
[2,2,2,2,2,1,1,1,1,1,1] => 50
[2,2,2,2,1,1,1,1,1,1,1,1] => 44
[2,2,2,1,1,1,1,1,1,1,1,1,1] => 36
[2,2,1,1,1,1,1,1,1,1,1,1,1,1] => 26
[2,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 14
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 16
[17] => 17
[16,1] => 15
[15,2] => 28
[15,1,1] => 28
[14,3] => 39
[14,2,1] => 12
[14,1,1,1] => 39
[13,4] => 48
[13,3,1] => 22
[13,2,2] => 22
[13,2,1,1] => 22
[13,1,1,1,1] => 48
[12,5] => 55
[12,4,1] => 30
[12,3,2] => 40
[12,3,1,1] => 40
[12,2,2,1] => 40
[12,2,1,1,1] => 30
[12,1,1,1,1,1] => 55
[11,6] => 60
[11,5,1] => 36
[11,4,2] => 54
[11,4,1,1] => 54
[11,3,3] => 54
[11,3,2,1] => 8
[11,3,1,1,1] => 54
[11,2,2,2] => 54
[11,2,2,1,1] => 54
[11,2,1,1,1,1] => 36
[11,1,1,1,1,1,1] => 60
[10,7] => 63
[10,6,1] => 40
[10,5,2] => 64
[10,5,1,1] => 64
[10,4,3] => 72
[10,4,2,1] => 14
[10,4,1,1,1] => 72
[10,3,3,1] => 14
[10,3,2,2] => 14
[10,3,2,1,1] => 14
[10,3,1,1,1,1] => 64
[10,2,2,2,1] => 72
[10,2,2,1,1,1] => 64
[10,2,1,1,1,1,1] => 40
[10,1,1,1,1,1,1,1] => 63
[9,8] => 64
[9,7,1] => 42
[9,6,2] => 70
[9,6,1,1] => 70
[9,5,3] => 84
[9,5,2,1] => 18
[9,5,1,1,1] => 84
[9,4,4] => 84
[9,4,3,1] => 24
[9,4,2,2] => 24
[9,4,2,1,1] => 24
[9,4,1,1,1,1] => 84
[9,3,3,2] => 24
[9,3,3,1,1] => 24
[9,3,2,2,1] => 24
[9,3,2,1,1,1] => 18
[9,3,1,1,1,1,1] => 70
[9,2,2,2,2] => 84
[9,2,2,2,1,1] => 84
[9,2,2,1,1,1,1] => 70
[9,2,1,1,1,1,1,1] => 42
[9,1,1,1,1,1,1,1,1] => 64
[8,8,1] => 42
[8,7,2] => 72
[8,7,1,1] => 72
[8,6,3] => 90
[8,6,2,1] => 20
[8,6,1,1,1] => 90
[8,5,4] => 96
[8,5,3,1] => 30
[8,5,2,2] => 30
[8,5,2,1,1] => 30
[8,5,1,1,1,1] => 96
[8,4,4,1] => 30
[8,4,3,2] => 40
[8,4,3,1,1] => 40
[8,4,2,2,1] => 40
[8,4,2,1,1,1] => 30
[8,4,1,1,1,1,1] => 90
[8,3,3,3] => 30
[8,3,3,2,1] => 40
[8,3,3,1,1,1] => 30
[8,3,2,2,2] => 30
[8,3,2,2,1,1] => 30
[8,3,2,1,1,1,1] => 20
[8,3,1,1,1,1,1,1] => 72
[8,2,2,2,2,1] => 96
[8,2,2,2,1,1,1] => 90
[8,2,2,1,1,1,1,1] => 72
[8,2,1,1,1,1,1,1,1] => 42
[8,1,1,1,1,1,1,1,1,1] => 63
[7,7,3] => 90
[7,7,2,1] => 20
[7,7,1,1,1] => 90
[7,6,4] => 100
[7,6,3,1] => 32
[7,6,2,2] => 32
[7,6,2,1,1] => 32
[7,6,1,1,1,1] => 100
[7,5,5] => 100
[7,5,4,1] => 36
[7,5,3,2] => 48
[7,5,3,1,1] => 48
[7,5,2,2,1] => 48
[7,5,2,1,1,1] => 36
[7,5,1,1,1,1,1] => 100
[7,4,4,2] => 48
[7,4,4,1,1] => 48
[7,4,3,3] => 48
[7,4,3,2,1] => 3
[7,4,3,1,1,1] => 48
[7,4,2,2,2] => 48
[7,4,2,2,1,1] => 48
[7,4,2,1,1,1,1] => 32
[7,4,1,1,1,1,1,1] => 90
[7,3,3,3,1] => 48
[7,3,3,2,2] => 48
[7,3,3,2,1,1] => 48
[7,3,3,1,1,1,1] => 32
[7,3,2,2,2,1] => 36
[7,3,2,2,1,1,1] => 32
[7,3,2,1,1,1,1,1] => 20
[7,3,1,1,1,1,1,1,1] => 70
[7,2,2,2,2,2] => 100
[7,2,2,2,2,1,1] => 100
[7,2,2,2,1,1,1,1] => 90
[7,2,2,1,1,1,1,1,1] => 70
[7,2,1,1,1,1,1,1,1,1] => 40
[7,1,1,1,1,1,1,1,1,1,1] => 60
[6,6,5] => 100
[6,6,4,1] => 36
[6,6,3,2] => 48
[6,6,3,1,1] => 48
[6,6,2,2,1] => 48
[6,6,2,1,1,1] => 36
[6,6,1,1,1,1,1] => 100
[6,5,5,1] => 36
[6,5,4,2] => 54
[6,5,4,1,1] => 54
[6,5,3,3] => 54
[6,5,3,2,1] => 4
[6,5,3,1,1,1] => 54
[6,5,2,2,2] => 54
[6,5,2,2,1,1] => 54
[6,5,2,1,1,1,1] => 36
[6,5,1,1,1,1,1,1] => 96
[6,4,4,3] => 54
[6,4,4,2,1] => 4
[6,4,4,1,1,1] => 54
[6,4,3,3,1] => 4
[6,4,3,2,2] => 4
[6,4,3,2,1,1] => 4
[6,4,3,1,1,1,1] => 48
[6,4,2,2,2,1] => 54
[6,4,2,2,1,1,1] => 48
[6,4,2,1,1,1,1,1] => 30
[6,4,1,1,1,1,1,1,1] => 84
[6,3,3,3,2] => 54
[6,3,3,3,1,1] => 54
[6,3,3,2,2,1] => 54
[6,3,3,2,1,1,1] => 48
[6,3,3,1,1,1,1,1] => 30
[6,3,2,2,2,2] => 36
[6,3,2,2,2,1,1] => 36
[6,3,2,2,1,1,1,1] => 30
[6,3,2,1,1,1,1,1,1] => 18
[6,3,1,1,1,1,1,1,1,1] => 64
[6,2,2,2,2,2,1] => 100
[6,2,2,2,2,1,1,1] => 96
[6,2,2,2,1,1,1,1,1] => 84
[6,2,2,1,1,1,1,1,1,1] => 64
[6,2,1,1,1,1,1,1,1,1,1] => 36
[6,1,1,1,1,1,1,1,1,1,1,1] => 55
[5,5,5,2] => 48
[5,5,5,1,1] => 48
[5,5,4,3] => 54
[5,5,4,2,1] => 4
[5,5,4,1,1,1] => 54
[5,5,3,3,1] => 4
[5,5,3,2,2] => 4
[5,5,3,2,1,1] => 4
[5,5,3,1,1,1,1] => 48
[5,5,2,2,2,1] => 54
[5,5,2,2,1,1,1] => 48
[5,5,2,1,1,1,1,1] => 30
[5,5,1,1,1,1,1,1,1] => 84
[5,4,4,4] => 48
[5,4,4,3,1] => 4
[5,4,4,2,2] => 4
[5,4,4,2,1,1] => 4
[5,4,4,1,1,1,1] => 48
[5,4,3,3,2] => 4
[5,4,3,3,1,1] => 4
[5,4,3,2,2,1] => 4
[5,4,3,2,1,1,1] => 3
[5,4,3,1,1,1,1,1] => 40
[5,4,2,2,2,2] => 48
[5,4,2,2,2,1,1] => 48
[5,4,2,2,1,1,1,1] => 40
[5,4,2,1,1,1,1,1,1] => 24
[5,4,1,1,1,1,1,1,1,1] => 72
[5,3,3,3,3] => 48
[5,3,3,3,2,1] => 54
[5,3,3,3,1,1,1] => 48
[5,3,3,2,2,2] => 48
[5,3,3,2,2,1,1] => 48
[5,3,3,2,1,1,1,1] => 40
[5,3,3,1,1,1,1,1,1] => 24
[5,3,2,2,2,2,1] => 32
[5,3,2,2,2,1,1,1] => 30
[5,3,2,2,1,1,1,1,1] => 24
[5,3,2,1,1,1,1,1,1,1] => 14
[5,3,1,1,1,1,1,1,1,1,1] => 54
[5,2,2,2,2,2,2] => 90
[5,2,2,2,2,2,1,1] => 90
[5,2,2,2,2,1,1,1,1] => 84
[5,2,2,2,1,1,1,1,1,1] => 72
[5,2,2,1,1,1,1,1,1,1,1] => 54
[5,2,1,1,1,1,1,1,1,1,1,1] => 30
[5,1,1,1,1,1,1,1,1,1,1,1,1] => 48
[4,4,4,4,1] => 48
[4,4,4,3,2] => 54
[4,4,4,3,1,1] => 54
[4,4,4,2,2,1] => 54
[4,4,4,2,1,1,1] => 48
[4,4,4,1,1,1,1,1] => 30
[4,4,3,3,3] => 48
[4,4,3,3,2,1] => 54
[4,4,3,3,1,1,1] => 48
[4,4,3,2,2,2] => 48
[4,4,3,2,2,1,1] => 48
[4,4,3,2,1,1,1,1] => 40
[4,4,3,1,1,1,1,1,1] => 24
[4,4,2,2,2,2,1] => 32
[4,4,2,2,2,1,1,1] => 30
[4,4,2,2,1,1,1,1,1] => 24
[4,4,2,1,1,1,1,1,1,1] => 14
[4,4,1,1,1,1,1,1,1,1,1] => 54
[4,3,3,3,3,1] => 36
[4,3,3,3,2,2] => 36
[4,3,3,3,2,1,1] => 36
[4,3,3,3,1,1,1,1] => 30
[4,3,3,2,2,2,1] => 32
[4,3,3,2,2,1,1,1] => 30
[4,3,3,2,1,1,1,1,1] => 24
[4,3,3,1,1,1,1,1,1,1] => 14
[4,3,2,2,2,2,2] => 20
[4,3,2,2,2,2,1,1] => 20
[4,3,2,2,2,1,1,1,1] => 18
[4,3,2,2,1,1,1,1,1,1] => 14
[4,3,2,1,1,1,1,1,1,1,1] => 8
[4,3,1,1,1,1,1,1,1,1,1,1] => 40
[4,2,2,2,2,2,2,1] => 72
[4,2,2,2,2,2,1,1,1] => 70
[4,2,2,2,2,1,1,1,1,1] => 64
[4,2,2,2,1,1,1,1,1,1,1] => 54
[4,2,2,1,1,1,1,1,1,1,1,1] => 40
[4,2,1,1,1,1,1,1,1,1,1,1,1] => 22
[4,1,1,1,1,1,1,1,1,1,1,1,1,1] => 39
[3,3,3,3,3,2] => 100
[3,3,3,3,3,1,1] => 100
[3,3,3,3,2,2,1] => 100
[3,3,3,3,2,1,1,1] => 96
[3,3,3,3,1,1,1,1,1] => 84
[3,3,3,2,2,2,2] => 90
[3,3,3,2,2,2,1,1] => 90
[3,3,3,2,2,1,1,1,1] => 84
[3,3,3,2,1,1,1,1,1,1] => 72
[3,3,3,1,1,1,1,1,1,1,1] => 54
[3,3,2,2,2,2,2,1] => 72
[3,3,2,2,2,2,1,1,1] => 70
[3,3,2,2,2,1,1,1,1,1] => 64
[3,3,2,2,1,1,1,1,1,1,1] => 54
[3,3,2,1,1,1,1,1,1,1,1,1] => 40
[3,3,1,1,1,1,1,1,1,1,1,1,1] => 22
[3,2,2,2,2,2,2,2] => 42
[3,2,2,2,2,2,2,1,1] => 42
[3,2,2,2,2,2,1,1,1,1] => 40
[3,2,2,2,2,1,1,1,1,1,1] => 36
[3,2,2,2,1,1,1,1,1,1,1,1] => 30
[3,2,2,1,1,1,1,1,1,1,1,1,1] => 22
[3,2,1,1,1,1,1,1,1,1,1,1,1,1] => 12
[3,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 28
[2,2,2,2,2,2,2,2,1] => 64
[2,2,2,2,2,2,2,1,1,1] => 63
[2,2,2,2,2,2,1,1,1,1,1] => 60
[2,2,2,2,2,1,1,1,1,1,1,1] => 55
[2,2,2,2,1,1,1,1,1,1,1,1,1] => 48
[2,2,2,1,1,1,1,1,1,1,1,1,1,1] => 39
[2,2,1,1,1,1,1,1,1,1,1,1,1,1,1] => 28
[2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 15
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 17
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Generating function
click to show known generating functions
Search the OEIS for these generating functions
Search the Online Encyclopedia of Integer
Sequences for the coefficients of a few of the
first generating functions, in the case at hand:
1,0,2 3,0,2 2,3,2 1,0,0,2,0,8 4,0,0,2,0,2,4,3 2,6,0,2,0,2,0,4,0,6 2,0,9,2,4,2,0,0,4,0,0,4,3 1,0,0,0,2,0,0,8,3,2,0,12,0,4,0,0,0,4,0,6 5,0,0,0,2,0,0,2,6,2,6,0,0,0,10,0,12,0,0,4,0,0,4,3
$F_{1} = q$
$F_{2} = 2\ q^{2}$
$F_{3} = q + 2\ q^{3}$
$F_{4} = 3\ q^{2} + 2\ q^{4}$
$F_{5} = 2\ q^{3} + 3\ q^{4} + 2\ q^{5}$
$F_{6} = q + 2\ q^{4} + 8\ q^{6}$
$F_{7} = 4\ q^{2} + 2\ q^{5} + 2\ q^{7} + 4\ q^{8} + 3\ q^{9}$
$F_{8} = 2\ q^{3} + 6\ q^{4} + 2\ q^{6} + 2\ q^{8} + 4\ q^{10} + 6\ q^{12}$
$F_{9} = 2\ q^{4} + 9\ q^{6} + 2\ q^{7} + 4\ q^{8} + 2\ q^{9} + 4\ q^{12} + 4\ q^{15} + 3\ q^{16}$
$F_{10} = q + 2\ q^{5} + 8\ q^{8} + 3\ q^{9} + 2\ q^{10} + 12\ q^{12} + 4\ q^{14} + 4\ q^{18} + 6\ q^{20}$
$F_{11} = 5\ q^{2} + 2\ q^{6} + 2\ q^{9} + 6\ q^{10} + 2\ q^{11} + 6\ q^{12} + 10\ q^{16} + 12\ q^{18} + 4\ q^{21} + 4\ q^{24} + 3\ q^{25}$
$F_{12} = 2\ q^{3} + 10\ q^{4} + 2\ q^{7} + 2\ q^{10} + 8\ q^{12} + 4\ q^{15} + 3\ q^{16} + 4\ q^{18} + 6\ q^{20} + 22\ q^{24} + 4\ q^{27} + 4\ q^{28} + 6\ q^{30}$
$F_{13} = 2\ q^{4} + 12\ q^{6} + 12\ q^{8} + 2\ q^{11} + 2\ q^{13} + 6\ q^{14} + 4\ q^{18} + 10\ q^{20} + 6\ q^{24} + 4\ q^{27} + 12\ q^{30} + 10\ q^{32} + 4\ q^{35} + 15\ q^{36}$
$F_{14} = 2\ q^{5} + 8\ q^{8} + 5\ q^{9} + 26\ q^{12} + 2\ q^{14} + 11\ q^{16} + 4\ q^{21} + 4\ q^{22} + 4\ q^{24} + 3\ q^{25} + 6\ q^{28} + 4\ q^{30} + 16\ q^{36} + 16\ q^{40} + 6\ q^{42} + 6\ q^{45} + 12\ q^{48}$
$F_{15} = q + 2\ q^{6} + 10\ q^{10} + 6\ q^{12} + 2\ q^{13} + 2\ q^{15} + 12\ q^{16} + 24\ q^{18} + 28\ q^{24} + 4\ q^{28} + 6\ q^{30} + 6\ q^{32} + 4\ q^{33} + 4\ q^{40} + 12\ q^{42} + 4\ q^{45} + 12\ q^{48} + 3\ q^{49} + 6\ q^{50} + 6\ q^{54} + 18\ q^{60} + 4\ q^{64}$
$F_{16} = 6\ q^{2} + 2\ q^{7} + 2\ q^{11} + 8\ q^{12} + 2\ q^{14} + 4\ q^{15} + 5\ q^{16} + 18\ q^{20} + 27\ q^{24} + 4\ q^{26} + 8\ q^{27} + 12\ q^{32} + 4\ q^{35} + 43\ q^{36} + 4\ q^{44} + 12\ q^{48} + 4\ q^{50} + 4\ q^{54} + 14\ q^{56} + 12\ q^{60} + 6\ q^{63} + 12\ q^{72} + 6\ q^{75} + 12\ q^{80}$
$F_{17} = 2\ q^{3} + 15\ q^{4} + 2\ q^{8} + 2\ q^{12} + 8\ q^{14} + 2\ q^{15} + 2\ q^{17} + 4\ q^{18} + 6\ q^{20} + 6\ q^{22} + 12\ q^{24} + 4\ q^{28} + 22\ q^{30} + 9\ q^{32} + 16\ q^{36} + 4\ q^{39} + 18\ q^{40} + 6\ q^{42} + 40\ q^{48} + 32\ q^{54} + 4\ q^{55} + 4\ q^{60} + 4\ q^{63} + 11\ q^{64} + 8\ q^{70} + 12\ q^{72} + 12\ q^{84} + 12\ q^{90} + 6\ q^{96} + 12\ q^{100}$
Description
The number of ways to place as many non-attacking rooks as possible on a Ferrers board.
References
Code
def statistic(la):
return next(v for v in reversed(matrix([[1]*p + [0]*(la[0]-p) for p in la]).rook_vector()) if v)
Created
Dec 22, 2020 at 13:32 by Martin Rubey
Updated
Dec 22, 2020 at 13:32 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!