Identifier
- St001662: Permutations ⟶ ℤ
Values
[1] => 1
[1,2] => 2
[2,1] => 1
[1,2,3] => 3
[1,3,2] => 1
[2,1,3] => 1
[2,3,1] => 2
[3,1,2] => 2
[3,2,1] => 1
[1,2,3,4] => 4
[1,2,4,3] => 2
[1,3,2,4] => 1
[1,3,4,2] => 2
[1,4,2,3] => 2
[1,4,3,2] => 1
[2,1,3,4] => 2
[2,1,4,3] => 1
[2,3,1,4] => 2
[2,3,4,1] => 3
[2,4,1,3] => 1
[2,4,3,1] => 1
[3,1,2,4] => 2
[3,1,4,2] => 1
[3,2,1,4] => 1
[3,2,4,1] => 1
[3,4,1,2] => 2
[3,4,2,1] => 2
[4,1,2,3] => 3
[4,1,3,2] => 1
[4,2,1,3] => 1
[4,2,3,1] => 2
[4,3,1,2] => 2
[4,3,2,1] => 1
[1,2,3,4,5] => 5
[1,2,3,5,4] => 3
[1,2,4,3,5] => 2
[1,2,4,5,3] => 2
[1,2,5,3,4] => 2
[1,2,5,4,3] => 2
[1,3,2,4,5] => 2
[1,3,2,5,4] => 1
[1,3,4,2,5] => 2
[1,3,4,5,2] => 3
[1,3,5,2,4] => 1
[1,3,5,4,2] => 1
[1,4,2,3,5] => 2
[1,4,2,5,3] => 1
[1,4,3,2,5] => 1
[1,4,3,5,2] => 1
[1,4,5,2,3] => 2
[1,4,5,3,2] => 2
[1,5,2,3,4] => 3
[1,5,2,4,3] => 1
[1,5,3,2,4] => 1
[1,5,3,4,2] => 2
[1,5,4,2,3] => 2
[1,5,4,3,2] => 1
[2,1,3,4,5] => 3
[2,1,3,5,4] => 1
[2,1,4,3,5] => 1
[2,1,4,5,3] => 2
[2,1,5,3,4] => 2
[2,1,5,4,3] => 1
[2,3,1,4,5] => 2
[2,3,1,5,4] => 2
[2,3,4,1,5] => 3
[2,3,4,5,1] => 4
[2,3,5,1,4] => 2
[2,3,5,4,1] => 2
[2,4,1,3,5] => 1
[2,4,1,5,3] => 1
[2,4,3,1,5] => 1
[2,4,3,5,1] => 1
[2,4,5,1,3] => 2
[2,4,5,3,1] => 2
[2,5,1,3,4] => 2
[2,5,1,4,3] => 1
[2,5,3,1,4] => 1
[2,5,3,4,1] => 2
[2,5,4,1,3] => 1
[2,5,4,3,1] => 1
[3,1,2,4,5] => 2
[3,1,2,5,4] => 2
[3,1,4,2,5] => 1
[3,1,4,5,2] => 2
[3,1,5,2,4] => 1
[3,1,5,4,2] => 1
[3,2,1,4,5] => 2
[3,2,1,5,4] => 1
[3,2,4,1,5] => 1
[3,2,4,5,1] => 2
[3,2,5,1,4] => 1
[3,2,5,4,1] => 1
[3,4,1,2,5] => 2
[3,4,1,5,2] => 2
[3,4,2,1,5] => 2
[3,4,2,5,1] => 2
[3,4,5,1,2] => 3
[3,4,5,2,1] => 3
[3,5,1,2,4] => 2
[3,5,1,4,2] => 1
>>> Load all 1200 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The length of the longest factor of consecutive numbers in a permutation.
References
[1] Claesson, A. From Hertzsprung's problem to pattern-rewriting systems arXiv:2012.15309
Code
def statistic(pi):
m = 0
i = 0
while i + m < len(pi):
c = pi[i] - i
if all(pi[j]-j == c for j in range(i, i + m)):
for j in range(i + m, len(pi)):
if pi[j] - j == c:
m += 1
else:
break
i += m
return m
Created
Jan 01, 2021 at 12:10 by Martin Rubey
Updated
Jan 01, 2021 at 12:10 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!