Identifier
- St001676: Finite Cartan types ⟶ ℤ
Values
=>
Cc0022;cc-rep
['A',1]=>4
['A',2]=>9
['B',2]=>18
['G',2]=>48
['A',3]=>16
['B',3]=>40
['C',3]=>40
['A',4]=>25
['B',4]=>70
['C',4]=>70
['D',4]=>36
['F',4]=>162
['A',5]=>36
['B',5]=>108
['C',5]=>108
['D',5]=>64
['A',6]=>49
['B',6]=>154
['C',6]=>154
['D',6]=>100
['E',6]=>144
['A',7]=>64
['B',7]=>208
['C',7]=>208
['D',7]=>144
['E',7]=>324
['A',8]=>81
['B',8]=>270
['C',8]=>270
['D',8]=>196
['E',8]=>900
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The gamma number of the Weyl group of a Cartan type.
According to Sueter [1], Bourbaki defines $\gamma = h^2$ in the simply laced case, $h$ the Coxeter number, and otherwise $\gamma = k g g^\vee$, where $g$ is the dual Coxeter number, $g^\vee$ is the dual Coxeter number of the dual root system and $k = \frac{(\theta, \theta)}{(\theta_s, \theta_s)}$, for $\theta$ the highest root and $\theta_s$ the highest short root.
According to Sueter [1], Bourbaki defines $\gamma = h^2$ in the simply laced case, $h$ the Coxeter number, and otherwise $\gamma = k g g^\vee$, where $g$ is the dual Coxeter number, $g^\vee$ is the dual Coxeter number of the dual root system and $k = \frac{(\theta, \theta)}{(\theta_s, \theta_s)}$, for $\theta$ the highest root and $\theta_s$ the highest short root.
References
[1] Suter, R. Coxeter and dual Coxeter numbers MathSciNet:1600666
Code
def statistic(ct): if ct.is_simply_laced(): return ct.coxeter_number()^2 if ct.type() in ["B", "C"]: n = ct.rank() return 4*n^2 + 2*n - 2 if ct == CartanType(["G", 2]): return 48 if ct == CartanType(["F", 4]): return 162
Created
Feb 06, 2021 at 23:03 by Martin Rubey
Updated
Feb 06, 2021 at 23:03 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!