edit this statistic or download as text // json
Identifier
Values
=>
Cc0022;cc-rep
['A',1]=>1 ['A',2]=>5 ['B',2]=>10 ['G',2]=>26 ['A',3]=>14 ['B',3]=>35 ['C',3]=>35 ['A',4]=>30 ['B',4]=>84 ['C',4]=>84 ['D',4]=>44 ['F',4]=>196 ['A',5]=>55 ['B',5]=>165 ['C',5]=>165 ['D',5]=>100 ['A',6]=>91 ['B',6]=>286 ['C',6]=>286 ['D',6]=>190 ['E',6]=>276 ['A',7]=>140 ['B',7]=>455 ['C',7]=>455 ['D',7]=>322 ['E',7]=>735 ['A',8]=>204 ['B',8]=>680 ['C',8]=>680 ['D',8]=>504 ['E',8]=>2360
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The sum of the squares of the exponents of the Weyl group of the finite Cartan type.
According to Suter [1], this equals $\frac{1}{6}n(h^2 + \gamma - h)$, where $n$ is the rank, $h$ is the Coxeter number and $\gamma$ the gamma number.
References
[1] Suter, R. Coxeter and dual Coxeter numbers MathSciNet:1600666
Code
def statistic(ct):
    return sum((d-1)^2 for d in WeylGroup(ct).degrees())

Created
Feb 06, 2021 at 23:20 by Martin Rubey
Updated
Feb 06, 2021 at 23:20 by Martin Rubey