Identifier
-
Mp00199:
Dyck paths
—prime Dyck path⟶
Dyck paths
Mp00142: Dyck paths —promotion⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St001685: Permutations ⟶ ℤ
Values
[1,0] => [1,1,0,0] => [1,0,1,0] => [1,2] => 0
[1,0,1,0] => [1,1,0,1,0,0] => [1,0,1,0,1,0] => [1,2,3] => 0
[1,1,0,0] => [1,1,1,0,0,0] => [1,0,1,1,0,0] => [1,3,2] => 1
[1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => [1,2,3,4] => 0
[1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,0,1,0,1,1,0,0] => [1,2,4,3] => 2
[1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,0] => [1,3,2,4] => 1
[1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,0,1,1,0,1,0,0] => [1,3,4,2] => 1
[1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,0,1,1,1,0,0,0] => [1,4,3,2] => 1
[1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => 0
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => [1,2,3,5,4] => 3
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,2,4,3,5] => 2
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => [1,2,4,5,3] => 2
[1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [1,2,5,4,3] => 2
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,3,2,4,5] => 1
[1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,3,2,5,4] => 3
[1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0] => [1,3,4,2,5] => 1
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => [1,3,4,5,2] => 1
[1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,1,1,0,0,0] => [1,3,5,4,2] => 2
[1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => [1,4,3,2,5] => 1
[1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,1,0,0,1,0,0] => [1,4,3,5,2] => 1
[1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,0,1,0,0,0] => [1,4,5,3,2] => 1
[1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,5,4,3,2] => 1
[1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => 0
[1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,2,3,4,6,5] => 4
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,2,3,5,4,6] => 3
[1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,2,3,5,6,4] => 3
[1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,2,3,6,5,4] => 3
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,2,4,3,5,6] => 2
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,2,4,3,6,5] => 4
[1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,2,4,5,3,6] => 2
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,2,4,5,6,3] => 2
[1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,1,0,0,0] => [1,2,4,6,5,3] => 3
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,2,5,4,3,6] => 2
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,1,0,0] => [1,2,5,4,6,3] => 2
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,1,0,1,0,0,0] => [1,2,5,6,4,3] => 2
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,2,6,5,4,3] => 2
[1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,3,2,4,5,6] => 1
[1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,3,2,4,6,5] => 4
[1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,3,2,5,4,6] => 3
[1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [1,0,1,1,0,0,1,1,0,1,0,0] => [1,3,2,5,6,4] => 3
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,3,2,6,5,4] => 3
[1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,3,4,2,5,6] => 1
[1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,1,0,0] => [1,3,4,2,6,5] => 4
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => [1,3,4,5,2,6] => 1
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,0,1,1,0,1,0,1,0,1,0,0] => [1,3,4,5,6,2] => 1
[1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,1,0,1,1,0,0,0] => [1,3,4,6,5,2] => 3
[1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [1,0,1,1,0,1,1,0,0,0,1,0] => [1,3,5,4,2,6] => 2
[1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [1,0,1,1,0,1,1,0,0,1,0,0] => [1,3,5,4,6,2] => 2
[1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,0,1,1,0,1,1,0,1,0,0,0] => [1,3,5,6,4,2] => 2
[1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => [1,3,6,5,4,2] => 2
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,4,3,2,5,6] => 1
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => [1,4,3,2,6,5] => 4
[1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0,1,0] => [1,4,3,5,2,6] => 1
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [1,0,1,1,1,0,0,1,0,1,0,0] => [1,4,3,5,6,2] => 1
[1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,1,1,0,0,1,1,0,0,0] => [1,4,3,6,5,2] => 3
[1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => [1,4,5,3,2,6] => 1
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [1,0,1,1,1,0,1,0,0,1,0,0] => [1,4,5,3,6,2] => 1
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,1,1,0,1,0,1,0,0,0] => [1,4,5,6,3,2] => 1
[1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,1,0,1,1,0,0,0,0] => [1,4,6,5,3,2] => 2
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,5,4,3,2,6] => 1
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [1,0,1,1,1,1,0,0,0,1,0,0] => [1,5,4,3,6,2] => 1
[1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,1,0,0,0] => [1,5,4,6,3,2] => 1
[1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [1,0,1,1,1,1,0,1,0,0,0,0] => [1,5,6,4,3,2] => 1
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,6,5,4,3,2] => 1
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6,7] => 0
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,2,3,4,5,7,6] => 5
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,2,3,4,6,5,7] => 4
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,0,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,1,0,0] => [1,2,3,4,6,7,5] => 4
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,2,3,4,7,6,5] => 4
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,2,3,5,4,6,7] => 3
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,1,1,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [1,2,3,5,4,7,6] => 5
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,0,1,1,0,1,0,0,1,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0] => [1,2,3,5,6,4,7] => 3
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,0,1,1,0,1,0,1,0,0] => [1,2,3,5,6,7,4] => 3
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,1,1,0,0,0] => [1,2,3,5,7,6,4] => 4
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [1,2,3,6,5,4,7] => 3
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,0,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,1,0,0] => [1,2,3,6,5,7,4] => 3
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,1,0,0,0] => [1,2,3,6,7,5,4] => 3
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,2,3,7,6,5,4] => 3
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,2,4,3,5,6,7] => 2
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,1,0,1,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0] => [1,2,4,3,5,7,6] => 5
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [1,2,4,3,6,5,7] => 4
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,1,1,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,1,0,1,0,0] => [1,2,4,3,6,7,5] => 4
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0] => [1,2,4,3,7,6,5] => 4
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0] => [1,2,4,5,3,6,7] => 2
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,1,0,0,1,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,1,0,0] => [1,2,4,5,3,7,6] => 5
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,1,0,0,1,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0,1,0] => [1,2,4,5,6,3,7] => 2
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,0,1,0,1,0,1,0,0] => [1,2,4,5,6,7,3] => 2
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,1,1,0,0,0] => [1,2,4,5,7,6,3] => 4
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0] => [1,2,4,6,5,3,7] => 3
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,1,1,0,0,1,0,0] => [1,2,4,6,5,7,3] => 3
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,0,1,1,0,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,1,0,1,0,0,0] => [1,2,4,6,7,5,3] => 3
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0] => [1,2,4,7,6,5,3] => 3
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,1,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0] => [1,2,5,4,3,6,7] => 2
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0] => [1,2,5,4,3,7,6] => 5
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,1,0,0,1,0,0,1,0,0] => [1,0,1,0,1,1,1,0,0,1,0,0,1,0] => [1,2,5,4,6,3,7] => 2
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,1,0,1,0,0] => [1,2,5,4,6,7,3] => 2
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,0,1,1,1,0,0,1,1,0,0,0] => [1,2,5,4,7,6,3] => 4
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,0,1,1,1,0,1,0,0,0,1,0] => [1,2,5,6,4,3,7] => 2
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,1,0,1,0,0,1,0,0,0] => [1,0,1,0,1,1,1,0,1,0,0,1,0,0] => [1,2,5,6,4,7,3] => 2
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,0,1,1,1,0,1,0,1,0,0,0] => [1,2,5,6,7,4,3] => 2
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,1,1,0,0,0,0] => [1,2,5,7,6,4,3] => 3
>>> Load all 173 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of distinct positions of the pattern letter 1 in occurrences of 132 in a permutation.
Map
promotion
Description
The promotion of the two-row standard Young tableau of a Dyck path.
Dyck paths of semilength $n$ are in bijection with standard Young tableaux of shape $(n^2)$, see Mp00033to two-row standard tableau.
This map is the bijection on such standard Young tableaux given by Schützenberger's promotion. For definitions and details, see [1] and the references therein.
Dyck paths of semilength $n$ are in bijection with standard Young tableaux of shape $(n^2)$, see Mp00033to two-row standard tableau.
This map is the bijection on such standard Young tableaux given by Schützenberger's promotion. For definitions and details, see [1] and the references therein.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
to 312-avoiding permutation
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!