Identifier
Values
[[1,0],[0]] => 2
[[1,0],[1]] => 2
[[2,0],[0]] => 2
[[2,0],[1]] => 1
[[2,0],[2]] => 2
[[1,1],[1]] => 1
[[3,0],[0]] => 2
[[3,0],[1]] => 2
[[3,0],[2]] => 2
[[3,0],[3]] => 2
[[2,1],[1]] => 2
[[2,1],[2]] => 2
[[4,0],[0]] => 2
[[4,0],[1]] => 2
[[4,0],[2]] => 1
[[4,0],[3]] => 2
[[4,0],[4]] => 2
[[3,1],[1]] => 2
[[3,1],[2]] => 1
[[3,1],[3]] => 2
[[2,2],[2]] => 1
[[5,0],[0]] => 2
[[5,0],[1]] => 2
[[5,0],[2]] => 2
[[5,0],[3]] => 2
[[5,0],[4]] => 2
[[5,0],[5]] => 2
[[4,1],[1]] => 2
[[4,1],[2]] => 2
[[4,1],[3]] => 2
[[4,1],[4]] => 2
[[3,2],[2]] => 2
[[3,2],[3]] => 2
[[6,0],[0]] => 2
[[6,0],[1]] => 2
[[6,0],[2]] => 2
[[6,0],[3]] => 1
[[6,0],[4]] => 2
[[6,0],[5]] => 2
[[6,0],[6]] => 2
[[5,1],[1]] => 2
[[5,1],[2]] => 2
[[5,1],[3]] => 1
[[5,1],[4]] => 2
[[5,1],[5]] => 2
[[4,2],[2]] => 2
[[4,2],[3]] => 1
[[4,2],[4]] => 2
[[3,3],[3]] => 1
[[7,0],[0]] => 2
[[7,0],[1]] => 2
[[7,0],[2]] => 2
[[7,0],[3]] => 2
[[7,0],[4]] => 2
[[7,0],[5]] => 2
[[7,0],[6]] => 2
[[7,0],[7]] => 2
[[6,1],[1]] => 2
[[6,1],[2]] => 2
[[6,1],[3]] => 2
[[6,1],[4]] => 2
[[6,1],[5]] => 2
[[6,1],[6]] => 2
[[5,2],[2]] => 2
[[5,2],[3]] => 2
[[5,2],[4]] => 2
[[5,2],[5]] => 2
[[4,3],[3]] => 2
[[4,3],[4]] => 2
[[1,0,0],[0,0],[0]] => 3
[[1,0,0],[1,0],[0]] => 3
[[1,0,0],[1,0],[1]] => 3
[[2,0,0],[0,0],[0]] => 3
[[2,0,0],[1,0],[0]] => 3
[[2,0,0],[1,0],[1]] => 3
[[2,0,0],[2,0],[0]] => 3
[[2,0,0],[2,0],[1]] => 3
[[2,0,0],[2,0],[2]] => 3
[[1,1,0],[1,0],[0]] => 3
[[1,1,0],[1,0],[1]] => 3
[[1,1,0],[1,1],[1]] => 3
[[3,0,0],[0,0],[0]] => 3
[[3,0,0],[1,0],[0]] => 3
[[3,0,0],[1,0],[1]] => 3
[[3,0,0],[2,0],[0]] => 3
[[3,0,0],[2,0],[1]] => 1
[[3,0,0],[2,0],[2]] => 3
[[3,0,0],[3,0],[0]] => 3
[[3,0,0],[3,0],[1]] => 3
[[3,0,0],[3,0],[2]] => 3
[[3,0,0],[3,0],[3]] => 3
[[2,1,0],[1,0],[0]] => 3
[[2,1,0],[1,0],[1]] => 3
[[2,1,0],[1,1],[1]] => 2
[[2,1,0],[2,0],[0]] => 3
[[2,1,0],[2,0],[1]] => 2
[[2,1,0],[2,0],[2]] => 3
[[2,1,0],[2,1],[1]] => 3
[[2,1,0],[2,1],[2]] => 3
[[1,1,1],[1,1],[1]] => 1
[[4,0,0],[0,0],[0]] => 3
>>> Load all 1200 entries. <<<[[4,0,0],[1,0],[0]] => 3
[[4,0,0],[1,0],[1]] => 3
[[4,0,0],[2,0],[0]] => 3
[[4,0,0],[2,0],[1]] => 3
[[4,0,0],[2,0],[2]] => 3
[[4,0,0],[3,0],[0]] => 3
[[4,0,0],[3,0],[1]] => 3
[[4,0,0],[3,0],[2]] => 3
[[4,0,0],[3,0],[3]] => 3
[[4,0,0],[4,0],[0]] => 3
[[4,0,0],[4,0],[1]] => 3
[[4,0,0],[4,0],[2]] => 3
[[4,0,0],[4,0],[3]] => 3
[[4,0,0],[4,0],[4]] => 3
[[3,1,0],[1,0],[0]] => 3
[[3,1,0],[1,0],[1]] => 3
[[3,1,0],[1,1],[1]] => 6
[[3,1,0],[2,0],[0]] => 3
[[3,1,0],[2,0],[1]] => 6
[[3,1,0],[2,0],[2]] => 3
[[3,1,0],[2,1],[1]] => 6
[[3,1,0],[2,1],[2]] => 6
[[3,1,0],[3,0],[0]] => 3
[[3,1,0],[3,0],[1]] => 6
[[3,1,0],[3,0],[2]] => 6
[[3,1,0],[3,0],[3]] => 3
[[3,1,0],[3,1],[1]] => 3
[[3,1,0],[3,1],[2]] => 3
[[3,1,0],[3,1],[3]] => 3
[[2,2,0],[2,0],[0]] => 3
[[2,2,0],[2,0],[1]] => 3
[[2,2,0],[2,0],[2]] => 3
[[2,2,0],[2,1],[1]] => 3
[[2,2,0],[2,1],[2]] => 3
[[2,2,0],[2,2],[2]] => 3
[[2,1,1],[1,1],[1]] => 3
[[2,1,1],[2,1],[1]] => 3
[[2,1,1],[2,1],[2]] => 3
[[5,0,0],[0,0],[0]] => 3
[[5,0,0],[1,0],[0]] => 3
[[5,0,0],[1,0],[1]] => 3
[[5,0,0],[2,0],[0]] => 3
[[5,0,0],[2,0],[1]] => 3
[[5,0,0],[2,0],[2]] => 3
[[5,0,0],[3,0],[0]] => 3
[[5,0,0],[3,0],[1]] => 3
[[5,0,0],[3,0],[2]] => 3
[[5,0,0],[3,0],[3]] => 3
[[5,0,0],[4,0],[0]] => 3
[[5,0,0],[4,0],[1]] => 3
[[5,0,0],[4,0],[2]] => 3
[[5,0,0],[4,0],[3]] => 3
[[5,0,0],[4,0],[4]] => 3
[[5,0,0],[5,0],[0]] => 3
[[5,0,0],[5,0],[1]] => 3
[[5,0,0],[5,0],[2]] => 3
[[5,0,0],[5,0],[3]] => 3
[[5,0,0],[5,0],[4]] => 3
[[5,0,0],[5,0],[5]] => 3
[[4,1,0],[1,0],[0]] => 3
[[4,1,0],[1,0],[1]] => 3
[[4,1,0],[1,1],[1]] => 6
[[4,1,0],[2,0],[0]] => 3
[[4,1,0],[2,0],[1]] => 6
[[4,1,0],[2,0],[2]] => 3
[[4,1,0],[2,1],[1]] => 6
[[4,1,0],[2,1],[2]] => 6
[[4,1,0],[3,0],[0]] => 3
[[4,1,0],[3,0],[1]] => 6
[[4,1,0],[3,0],[2]] => 6
[[4,1,0],[3,0],[3]] => 3
[[4,1,0],[3,1],[1]] => 6
[[4,1,0],[3,1],[2]] => 6
[[4,1,0],[3,1],[3]] => 6
[[4,1,0],[4,0],[0]] => 3
[[4,1,0],[4,0],[1]] => 6
[[4,1,0],[4,0],[2]] => 6
[[4,1,0],[4,0],[3]] => 6
[[4,1,0],[4,0],[4]] => 3
[[4,1,0],[4,1],[1]] => 3
[[4,1,0],[4,1],[2]] => 3
[[4,1,0],[4,1],[3]] => 3
[[4,1,0],[4,1],[4]] => 3
[[3,2,0],[2,0],[0]] => 3
[[3,2,0],[2,0],[1]] => 3
[[3,2,0],[2,0],[2]] => 3
[[3,2,0],[2,1],[1]] => 6
[[3,2,0],[2,1],[2]] => 6
[[3,2,0],[2,2],[2]] => 6
[[3,2,0],[3,0],[0]] => 3
[[3,2,0],[3,0],[1]] => 6
[[3,2,0],[3,0],[2]] => 6
[[3,2,0],[3,0],[3]] => 3
[[3,2,0],[3,1],[1]] => 3
[[3,2,0],[3,1],[2]] => 6
[[3,2,0],[3,1],[3]] => 3
[[3,2,0],[3,2],[2]] => 3
[[3,2,0],[3,2],[3]] => 3
[[3,1,1],[1,1],[1]] => 3
[[3,1,1],[2,1],[1]] => 3
[[3,1,1],[2,1],[2]] => 3
[[3,1,1],[3,1],[1]] => 3
[[3,1,1],[3,1],[2]] => 3
[[3,1,1],[3,1],[3]] => 3
[[2,2,1],[2,1],[1]] => 3
[[2,2,1],[2,1],[2]] => 3
[[2,2,1],[2,2],[2]] => 3
[[6,0,0],[0,0],[0]] => 3
[[6,0,0],[1,0],[0]] => 3
[[6,0,0],[1,0],[1]] => 3
[[6,0,0],[2,0],[0]] => 3
[[6,0,0],[2,0],[1]] => 3
[[6,0,0],[2,0],[2]] => 3
[[6,0,0],[3,0],[0]] => 3
[[6,0,0],[3,0],[1]] => 3
[[6,0,0],[3,0],[2]] => 3
[[6,0,0],[3,0],[3]] => 3
[[6,0,0],[4,0],[0]] => 3
[[6,0,0],[4,0],[1]] => 3
[[6,0,0],[4,0],[2]] => 1
[[6,0,0],[4,0],[3]] => 3
[[6,0,0],[4,0],[4]] => 3
[[6,0,0],[5,0],[0]] => 3
[[6,0,0],[5,0],[1]] => 3
[[6,0,0],[5,0],[2]] => 3
[[6,0,0],[5,0],[3]] => 3
[[6,0,0],[5,0],[4]] => 3
[[6,0,0],[5,0],[5]] => 3
[[6,0,0],[6,0],[0]] => 3
[[6,0,0],[6,0],[1]] => 3
[[6,0,0],[6,0],[2]] => 3
[[6,0,0],[6,0],[3]] => 3
[[6,0,0],[6,0],[4]] => 3
[[6,0,0],[6,0],[5]] => 3
[[6,0,0],[6,0],[6]] => 3
[[5,1,0],[1,0],[0]] => 3
[[5,1,0],[1,0],[1]] => 3
[[5,1,0],[1,1],[1]] => 6
[[5,1,0],[2,0],[0]] => 3
[[5,1,0],[2,0],[1]] => 6
[[5,1,0],[2,0],[2]] => 3
[[5,1,0],[2,1],[1]] => 6
[[5,1,0],[2,1],[2]] => 6
[[5,1,0],[3,0],[0]] => 3
[[5,1,0],[3,0],[1]] => 6
[[5,1,0],[3,0],[2]] => 6
[[5,1,0],[3,0],[3]] => 3
[[5,1,0],[3,1],[1]] => 6
[[5,1,0],[3,1],[2]] => 2
[[5,1,0],[3,1],[3]] => 6
[[5,1,0],[4,0],[0]] => 3
[[5,1,0],[4,0],[1]] => 6
[[5,1,0],[4,0],[2]] => 2
[[5,1,0],[4,0],[3]] => 6
[[5,1,0],[4,0],[4]] => 3
[[5,1,0],[4,1],[1]] => 6
[[5,1,0],[4,1],[2]] => 6
[[5,1,0],[4,1],[3]] => 6
[[5,1,0],[4,1],[4]] => 6
[[5,1,0],[5,0],[0]] => 3
[[5,1,0],[5,0],[1]] => 6
[[5,1,0],[5,0],[2]] => 6
[[5,1,0],[5,0],[3]] => 6
[[5,1,0],[5,0],[4]] => 6
[[5,1,0],[5,0],[5]] => 3
[[5,1,0],[5,1],[1]] => 3
[[5,1,0],[5,1],[2]] => 3
[[5,1,0],[5,1],[3]] => 3
[[5,1,0],[5,1],[4]] => 3
[[5,1,0],[5,1],[5]] => 3
[[4,2,0],[2,0],[0]] => 3
[[4,2,0],[2,0],[1]] => 3
[[4,2,0],[2,0],[2]] => 3
[[4,2,0],[2,1],[1]] => 6
[[4,2,0],[2,1],[2]] => 6
[[4,2,0],[2,2],[2]] => 2
[[4,2,0],[3,0],[0]] => 3
[[4,2,0],[3,0],[1]] => 6
[[4,2,0],[3,0],[2]] => 6
[[4,2,0],[3,0],[3]] => 3
[[4,2,0],[3,1],[1]] => 6
[[4,2,0],[3,1],[2]] => 1
[[4,2,0],[3,1],[3]] => 6
[[4,2,0],[3,2],[2]] => 6
[[4,2,0],[3,2],[3]] => 6
[[4,2,0],[4,0],[0]] => 3
[[4,2,0],[4,0],[1]] => 6
[[4,2,0],[4,0],[2]] => 2
[[4,2,0],[4,0],[3]] => 6
[[4,2,0],[4,0],[4]] => 3
[[4,2,0],[4,1],[1]] => 3
[[4,2,0],[4,1],[2]] => 6
[[4,2,0],[4,1],[3]] => 6
[[4,2,0],[4,1],[4]] => 3
[[4,2,0],[4,2],[2]] => 3
[[4,2,0],[4,2],[3]] => 3
[[4,2,0],[4,2],[4]] => 3
[[4,1,1],[1,1],[1]] => 3
[[4,1,1],[2,1],[1]] => 3
[[4,1,1],[2,1],[2]] => 3
[[4,1,1],[3,1],[1]] => 3
[[4,1,1],[3,1],[2]] => 1
[[4,1,1],[3,1],[3]] => 3
[[4,1,1],[4,1],[1]] => 3
[[4,1,1],[4,1],[2]] => 3
[[4,1,1],[4,1],[3]] => 3
[[4,1,1],[4,1],[4]] => 3
[[3,3,0],[3,0],[0]] => 3
[[3,3,0],[3,0],[1]] => 3
[[3,3,0],[3,0],[2]] => 3
[[3,3,0],[3,0],[3]] => 3
[[3,3,0],[3,1],[1]] => 3
[[3,3,0],[3,1],[2]] => 1
[[3,3,0],[3,1],[3]] => 3
[[3,3,0],[3,2],[2]] => 3
[[3,3,0],[3,2],[3]] => 3
[[3,3,0],[3,3],[3]] => 3
[[3,2,1],[2,1],[1]] => 3
[[3,2,1],[2,1],[2]] => 3
[[3,2,1],[2,2],[2]] => 2
[[3,2,1],[3,1],[1]] => 3
[[3,2,1],[3,1],[2]] => 2
[[3,2,1],[3,1],[3]] => 3
[[3,2,1],[3,2],[2]] => 3
[[3,2,1],[3,2],[3]] => 3
[[2,2,2],[2,2],[2]] => 1
[[1,0,0,0],[0,0,0],[0,0],[0]] => 4
[[1,0,0,0],[1,0,0],[0,0],[0]] => 4
[[1,0,0,0],[1,0,0],[1,0],[0]] => 4
[[1,0,0,0],[1,0,0],[1,0],[1]] => 4
[[2,0,0,0],[0,0,0],[0,0],[0]] => 4
[[2,0,0,0],[1,0,0],[0,0],[0]] => 4
[[2,0,0,0],[1,0,0],[1,0],[0]] => 2
[[2,0,0,0],[1,0,0],[1,0],[1]] => 4
[[2,0,0,0],[2,0,0],[0,0],[0]] => 4
[[2,0,0,0],[2,0,0],[1,0],[0]] => 4
[[2,0,0,0],[2,0,0],[1,0],[1]] => 2
[[2,0,0,0],[2,0,0],[2,0],[0]] => 4
[[2,0,0,0],[2,0,0],[2,0],[1]] => 4
[[2,0,0,0],[2,0,0],[2,0],[2]] => 4
[[1,1,0,0],[1,0,0],[0,0],[0]] => 4
[[1,1,0,0],[1,0,0],[1,0],[0]] => 2
[[1,1,0,0],[1,0,0],[1,0],[1]] => 4
[[1,1,0,0],[1,1,0],[1,0],[0]] => 4
[[1,1,0,0],[1,1,0],[1,0],[1]] => 2
[[1,1,0,0],[1,1,0],[1,1],[1]] => 4
[[3,0,0,0],[0,0,0],[0,0],[0]] => 4
[[3,0,0,0],[1,0,0],[0,0],[0]] => 4
[[3,0,0,0],[1,0,0],[1,0],[0]] => 4
[[3,0,0,0],[1,0,0],[1,0],[1]] => 4
[[3,0,0,0],[2,0,0],[0,0],[0]] => 4
[[3,0,0,0],[2,0,0],[1,0],[0]] => 4
[[3,0,0,0],[2,0,0],[1,0],[1]] => 4
[[3,0,0,0],[2,0,0],[2,0],[0]] => 4
[[3,0,0,0],[2,0,0],[2,0],[1]] => 4
[[3,0,0,0],[2,0,0],[2,0],[2]] => 4
[[3,0,0,0],[3,0,0],[0,0],[0]] => 4
[[3,0,0,0],[3,0,0],[1,0],[0]] => 4
[[3,0,0,0],[3,0,0],[1,0],[1]] => 4
[[3,0,0,0],[3,0,0],[2,0],[0]] => 4
[[3,0,0,0],[3,0,0],[2,0],[1]] => 4
[[3,0,0,0],[3,0,0],[2,0],[2]] => 4
[[3,0,0,0],[3,0,0],[3,0],[0]] => 4
[[3,0,0,0],[3,0,0],[3,0],[1]] => 4
[[3,0,0,0],[3,0,0],[3,0],[2]] => 4
[[3,0,0,0],[3,0,0],[3,0],[3]] => 4
[[2,1,0,0],[1,0,0],[0,0],[0]] => 4
[[2,1,0,0],[1,0,0],[1,0],[0]] => 4
[[2,1,0,0],[1,0,0],[1,0],[1]] => 4
[[2,1,0,0],[1,1,0],[1,0],[0]] => 8
[[2,1,0,0],[1,1,0],[1,0],[1]] => 8
[[2,1,0,0],[1,1,0],[1,1],[1]] => 8
[[2,1,0,0],[2,0,0],[0,0],[0]] => 4
[[2,1,0,0],[2,0,0],[1,0],[0]] => 8
[[2,1,0,0],[2,0,0],[1,0],[1]] => 8
[[2,1,0,0],[2,0,0],[2,0],[0]] => 4
[[2,1,0,0],[2,0,0],[2,0],[1]] => 8
[[2,1,0,0],[2,0,0],[2,0],[2]] => 4
[[2,1,0,0],[2,1,0],[1,0],[0]] => 4
[[2,1,0,0],[2,1,0],[1,0],[1]] => 4
[[2,1,0,0],[2,1,0],[1,1],[1]] => 8
[[2,1,0,0],[2,1,0],[2,0],[0]] => 4
[[2,1,0,0],[2,1,0],[2,0],[1]] => 8
[[2,1,0,0],[2,1,0],[2,0],[2]] => 4
[[2,1,0,0],[2,1,0],[2,1],[1]] => 4
[[2,1,0,0],[2,1,0],[2,1],[2]] => 4
[[1,1,1,0],[1,1,0],[1,0],[0]] => 4
[[1,1,1,0],[1,1,0],[1,0],[1]] => 4
[[1,1,1,0],[1,1,0],[1,1],[1]] => 4
[[1,1,1,0],[1,1,1],[1,1],[1]] => 4
[[4,0,0,0],[0,0,0],[0,0],[0]] => 4
[[4,0,0,0],[1,0,0],[0,0],[0]] => 4
[[4,0,0,0],[1,0,0],[1,0],[0]] => 4
[[4,0,0,0],[1,0,0],[1,0],[1]] => 4
[[4,0,0,0],[2,0,0],[0,0],[0]] => 4
[[4,0,0,0],[2,0,0],[1,0],[0]] => 4
[[4,0,0,0],[2,0,0],[1,0],[1]] => 4
[[4,0,0,0],[2,0,0],[2,0],[0]] => 2
[[4,0,0,0],[2,0,0],[2,0],[1]] => 4
[[4,0,0,0],[2,0,0],[2,0],[2]] => 4
[[4,0,0,0],[3,0,0],[0,0],[0]] => 4
[[4,0,0,0],[3,0,0],[1,0],[0]] => 4
[[4,0,0,0],[3,0,0],[1,0],[1]] => 4
[[4,0,0,0],[3,0,0],[2,0],[0]] => 4
[[4,0,0,0],[3,0,0],[2,0],[1]] => 1
[[4,0,0,0],[3,0,0],[2,0],[2]] => 4
[[4,0,0,0],[3,0,0],[3,0],[0]] => 4
[[4,0,0,0],[3,0,0],[3,0],[1]] => 4
[[4,0,0,0],[3,0,0],[3,0],[2]] => 4
[[4,0,0,0],[3,0,0],[3,0],[3]] => 4
[[4,0,0,0],[4,0,0],[0,0],[0]] => 4
[[4,0,0,0],[4,0,0],[1,0],[0]] => 4
[[4,0,0,0],[4,0,0],[1,0],[1]] => 4
[[4,0,0,0],[4,0,0],[2,0],[0]] => 4
[[4,0,0,0],[4,0,0],[2,0],[1]] => 4
[[4,0,0,0],[4,0,0],[2,0],[2]] => 2
[[4,0,0,0],[4,0,0],[3,0],[0]] => 4
[[4,0,0,0],[4,0,0],[3,0],[1]] => 4
[[4,0,0,0],[4,0,0],[3,0],[2]] => 4
[[4,0,0,0],[4,0,0],[3,0],[3]] => 4
[[4,0,0,0],[4,0,0],[4,0],[0]] => 4
[[4,0,0,0],[4,0,0],[4,0],[1]] => 4
[[4,0,0,0],[4,0,0],[4,0],[2]] => 4
[[4,0,0,0],[4,0,0],[4,0],[3]] => 4
[[4,0,0,0],[4,0,0],[4,0],[4]] => 4
[[3,1,0,0],[1,0,0],[0,0],[0]] => 4
[[3,1,0,0],[1,0,0],[1,0],[0]] => 4
[[3,1,0,0],[1,0,0],[1,0],[1]] => 4
[[3,1,0,0],[1,1,0],[1,0],[0]] => 8
[[3,1,0,0],[1,1,0],[1,0],[1]] => 8
[[3,1,0,0],[1,1,0],[1,1],[1]] => 8
[[3,1,0,0],[2,0,0],[0,0],[0]] => 4
[[3,1,0,0],[2,0,0],[1,0],[0]] => 8
[[3,1,0,0],[2,0,0],[1,0],[1]] => 8
[[3,1,0,0],[2,0,0],[2,0],[0]] => 2
[[3,1,0,0],[2,0,0],[2,0],[1]] => 8
[[3,1,0,0],[2,0,0],[2,0],[2]] => 4
[[3,1,0,0],[2,1,0],[1,0],[0]] => 8
[[3,1,0,0],[2,1,0],[1,0],[1]] => 8
[[3,1,0,0],[2,1,0],[1,1],[1]] => 3
[[3,1,0,0],[2,1,0],[2,0],[0]] => 8
[[3,1,0,0],[2,1,0],[2,0],[1]] => 3
[[3,1,0,0],[2,1,0],[2,0],[2]] => 8
[[3,1,0,0],[2,1,0],[2,1],[1]] => 8
[[3,1,0,0],[2,1,0],[2,1],[2]] => 8
[[3,1,0,0],[3,0,0],[0,0],[0]] => 4
[[3,1,0,0],[3,0,0],[1,0],[0]] => 8
[[3,1,0,0],[3,0,0],[1,0],[1]] => 8
[[3,1,0,0],[3,0,0],[2,0],[0]] => 8
[[3,1,0,0],[3,0,0],[2,0],[1]] => 3
[[3,1,0,0],[3,0,0],[2,0],[2]] => 8
[[3,1,0,0],[3,0,0],[3,0],[0]] => 4
[[3,1,0,0],[3,0,0],[3,0],[1]] => 8
[[3,1,0,0],[3,0,0],[3,0],[2]] => 8
[[3,1,0,0],[3,0,0],[3,0],[3]] => 4
[[3,1,0,0],[3,1,0],[1,0],[0]] => 4
[[3,1,0,0],[3,1,0],[1,0],[1]] => 4
[[3,1,0,0],[3,1,0],[1,1],[1]] => 8
[[3,1,0,0],[3,1,0],[2,0],[0]] => 4
[[3,1,0,0],[3,1,0],[2,0],[1]] => 8
[[3,1,0,0],[3,1,0],[2,0],[2]] => 2
[[3,1,0,0],[3,1,0],[2,1],[1]] => 8
[[3,1,0,0],[3,1,0],[2,1],[2]] => 8
[[3,1,0,0],[3,1,0],[3,0],[0]] => 4
[[3,1,0,0],[3,1,0],[3,0],[1]] => 8
[[3,1,0,0],[3,1,0],[3,0],[2]] => 8
[[3,1,0,0],[3,1,0],[3,0],[3]] => 4
[[3,1,0,0],[3,1,0],[3,1],[1]] => 4
[[3,1,0,0],[3,1,0],[3,1],[2]] => 4
[[3,1,0,0],[3,1,0],[3,1],[3]] => 4
[[2,2,0,0],[2,0,0],[0,0],[0]] => 4
[[2,2,0,0],[2,0,0],[1,0],[0]] => 4
[[2,2,0,0],[2,0,0],[1,0],[1]] => 4
[[2,2,0,0],[2,0,0],[2,0],[0]] => 2
[[2,2,0,0],[2,0,0],[2,0],[1]] => 4
[[2,2,0,0],[2,0,0],[2,0],[2]] => 4
[[2,2,0,0],[2,1,0],[1,0],[0]] => 4
[[2,2,0,0],[2,1,0],[1,0],[1]] => 4
[[2,2,0,0],[2,1,0],[1,1],[1]] => 2
[[2,2,0,0],[2,1,0],[2,0],[0]] => 4
[[2,2,0,0],[2,1,0],[2,0],[1]] => 2
[[2,2,0,0],[2,1,0],[2,0],[2]] => 4
[[2,2,0,0],[2,1,0],[2,1],[1]] => 4
[[2,2,0,0],[2,1,0],[2,1],[2]] => 4
[[2,2,0,0],[2,2,0],[2,0],[0]] => 4
[[2,2,0,0],[2,2,0],[2,0],[1]] => 4
[[2,2,0,0],[2,2,0],[2,0],[2]] => 2
[[2,2,0,0],[2,2,0],[2,1],[1]] => 4
[[2,2,0,0],[2,2,0],[2,1],[2]] => 4
[[2,2,0,0],[2,2,0],[2,2],[2]] => 4
[[2,1,1,0],[1,1,0],[1,0],[0]] => 4
[[2,1,1,0],[1,1,0],[1,0],[1]] => 4
[[2,1,1,0],[1,1,0],[1,1],[1]] => 4
[[2,1,1,0],[1,1,1],[1,1],[1]] => 3
[[2,1,1,0],[2,1,0],[1,0],[0]] => 4
[[2,1,1,0],[2,1,0],[1,0],[1]] => 4
[[2,1,1,0],[2,1,0],[1,1],[1]] => 3
[[2,1,1,0],[2,1,0],[2,0],[0]] => 4
[[2,1,1,0],[2,1,0],[2,0],[1]] => 3
[[2,1,1,0],[2,1,0],[2,0],[2]] => 4
[[2,1,1,0],[2,1,0],[2,1],[1]] => 4
[[2,1,1,0],[2,1,0],[2,1],[2]] => 4
[[2,1,1,0],[2,1,1],[1,1],[1]] => 4
[[2,1,1,0],[2,1,1],[2,1],[1]] => 4
[[2,1,1,0],[2,1,1],[2,1],[2]] => 4
[[1,1,1,1],[1,1,1],[1,1],[1]] => 1
[[5,0,0,0],[0,0,0],[0,0],[0]] => 4
[[5,0,0,0],[1,0,0],[0,0],[0]] => 4
[[5,0,0,0],[1,0,0],[1,0],[0]] => 4
[[5,0,0,0],[1,0,0],[1,0],[1]] => 4
[[5,0,0,0],[2,0,0],[0,0],[0]] => 4
[[5,0,0,0],[2,0,0],[1,0],[0]] => 4
[[5,0,0,0],[2,0,0],[1,0],[1]] => 4
[[5,0,0,0],[2,0,0],[2,0],[0]] => 4
[[5,0,0,0],[2,0,0],[2,0],[1]] => 4
[[5,0,0,0],[2,0,0],[2,0],[2]] => 4
[[5,0,0,0],[3,0,0],[0,0],[0]] => 4
[[5,0,0,0],[3,0,0],[1,0],[0]] => 4
[[5,0,0,0],[3,0,0],[1,0],[1]] => 4
[[5,0,0,0],[3,0,0],[2,0],[0]] => 4
[[5,0,0,0],[3,0,0],[2,0],[1]] => 4
[[5,0,0,0],[3,0,0],[2,0],[2]] => 4
[[5,0,0,0],[3,0,0],[3,0],[0]] => 4
[[5,0,0,0],[3,0,0],[3,0],[1]] => 4
[[5,0,0,0],[3,0,0],[3,0],[2]] => 4
[[5,0,0,0],[3,0,0],[3,0],[3]] => 4
[[5,0,0,0],[4,0,0],[0,0],[0]] => 4
[[5,0,0,0],[4,0,0],[1,0],[0]] => 4
[[5,0,0,0],[4,0,0],[1,0],[1]] => 4
[[5,0,0,0],[4,0,0],[2,0],[0]] => 4
[[5,0,0,0],[4,0,0],[2,0],[1]] => 4
[[5,0,0,0],[4,0,0],[2,0],[2]] => 4
[[5,0,0,0],[4,0,0],[3,0],[0]] => 4
[[5,0,0,0],[4,0,0],[3,0],[1]] => 4
[[5,0,0,0],[4,0,0],[3,0],[2]] => 4
[[5,0,0,0],[4,0,0],[3,0],[3]] => 4
[[5,0,0,0],[4,0,0],[4,0],[0]] => 4
[[5,0,0,0],[4,0,0],[4,0],[1]] => 4
[[5,0,0,0],[4,0,0],[4,0],[2]] => 4
[[5,0,0,0],[4,0,0],[4,0],[3]] => 4
[[5,0,0,0],[4,0,0],[4,0],[4]] => 4
[[5,0,0,0],[5,0,0],[0,0],[0]] => 4
[[5,0,0,0],[5,0,0],[1,0],[0]] => 4
[[5,0,0,0],[5,0,0],[1,0],[1]] => 4
[[5,0,0,0],[5,0,0],[2,0],[0]] => 4
[[5,0,0,0],[5,0,0],[2,0],[1]] => 4
[[5,0,0,0],[5,0,0],[2,0],[2]] => 4
[[5,0,0,0],[5,0,0],[3,0],[0]] => 4
[[5,0,0,0],[5,0,0],[3,0],[1]] => 4
[[5,0,0,0],[5,0,0],[3,0],[2]] => 4
[[5,0,0,0],[5,0,0],[3,0],[3]] => 4
[[5,0,0,0],[5,0,0],[4,0],[0]] => 4
[[5,0,0,0],[5,0,0],[4,0],[1]] => 4
[[5,0,0,0],[5,0,0],[4,0],[2]] => 4
[[5,0,0,0],[5,0,0],[4,0],[3]] => 4
[[5,0,0,0],[5,0,0],[4,0],[4]] => 4
[[5,0,0,0],[5,0,0],[5,0],[0]] => 4
[[5,0,0,0],[5,0,0],[5,0],[1]] => 4
[[5,0,0,0],[5,0,0],[5,0],[2]] => 4
[[5,0,0,0],[5,0,0],[5,0],[3]] => 4
[[5,0,0,0],[5,0,0],[5,0],[4]] => 4
[[5,0,0,0],[5,0,0],[5,0],[5]] => 4
[[4,1,0,0],[1,0,0],[0,0],[0]] => 4
[[4,1,0,0],[1,0,0],[1,0],[0]] => 4
[[4,1,0,0],[1,0,0],[1,0],[1]] => 4
[[4,1,0,0],[1,1,0],[1,0],[0]] => 8
[[4,1,0,0],[1,1,0],[1,0],[1]] => 8
[[4,1,0,0],[1,1,0],[1,1],[1]] => 8
[[4,1,0,0],[2,0,0],[0,0],[0]] => 4
[[4,1,0,0],[2,0,0],[1,0],[0]] => 8
[[4,1,0,0],[2,0,0],[1,0],[1]] => 8
[[4,1,0,0],[2,0,0],[2,0],[0]] => 4
[[4,1,0,0],[2,0,0],[2,0],[1]] => 8
[[4,1,0,0],[2,0,0],[2,0],[2]] => 4
[[4,1,0,0],[2,1,0],[1,0],[0]] => 8
[[4,1,0,0],[2,1,0],[1,0],[1]] => 8
[[4,1,0,0],[2,1,0],[1,1],[1]] => 12
[[4,1,0,0],[2,1,0],[2,0],[0]] => 8
[[4,1,0,0],[2,1,0],[2,0],[1]] => 12
[[4,1,0,0],[2,1,0],[2,0],[2]] => 8
[[4,1,0,0],[2,1,0],[2,1],[1]] => 8
[[4,1,0,0],[2,1,0],[2,1],[2]] => 8
[[4,1,0,0],[3,0,0],[0,0],[0]] => 4
[[4,1,0,0],[3,0,0],[1,0],[0]] => 8
[[4,1,0,0],[3,0,0],[1,0],[1]] => 8
[[4,1,0,0],[3,0,0],[2,0],[0]] => 8
[[4,1,0,0],[3,0,0],[2,0],[1]] => 12
[[4,1,0,0],[3,0,0],[2,0],[2]] => 8
[[4,1,0,0],[3,0,0],[3,0],[0]] => 4
[[4,1,0,0],[3,0,0],[3,0],[1]] => 8
[[4,1,0,0],[3,0,0],[3,0],[2]] => 8
[[4,1,0,0],[3,0,0],[3,0],[3]] => 4
[[4,1,0,0],[3,1,0],[1,0],[0]] => 8
[[4,1,0,0],[3,1,0],[1,0],[1]] => 8
[[4,1,0,0],[3,1,0],[1,1],[1]] => 12
[[4,1,0,0],[3,1,0],[2,0],[0]] => 8
[[4,1,0,0],[3,1,0],[2,0],[1]] => 12
[[4,1,0,0],[3,1,0],[2,0],[2]] => 8
[[4,1,0,0],[3,1,0],[2,1],[1]] => 12
[[4,1,0,0],[3,1,0],[2,1],[2]] => 12
[[4,1,0,0],[3,1,0],[3,0],[0]] => 8
[[4,1,0,0],[3,1,0],[3,0],[1]] => 12
[[4,1,0,0],[3,1,0],[3,0],[2]] => 12
[[4,1,0,0],[3,1,0],[3,0],[3]] => 8
[[4,1,0,0],[3,1,0],[3,1],[1]] => 8
[[4,1,0,0],[3,1,0],[3,1],[2]] => 8
[[4,1,0,0],[3,1,0],[3,1],[3]] => 8
[[4,1,0,0],[4,0,0],[0,0],[0]] => 4
[[4,1,0,0],[4,0,0],[1,0],[0]] => 8
[[4,1,0,0],[4,0,0],[1,0],[1]] => 8
[[4,1,0,0],[4,0,0],[2,0],[0]] => 8
[[4,1,0,0],[4,0,0],[2,0],[1]] => 12
[[4,1,0,0],[4,0,0],[2,0],[2]] => 8
[[4,1,0,0],[4,0,0],[3,0],[0]] => 8
[[4,1,0,0],[4,0,0],[3,0],[1]] => 12
[[4,1,0,0],[4,0,0],[3,0],[2]] => 12
[[4,1,0,0],[4,0,0],[3,0],[3]] => 8
[[4,1,0,0],[4,0,0],[4,0],[0]] => 4
[[4,1,0,0],[4,0,0],[4,0],[1]] => 8
[[4,1,0,0],[4,0,0],[4,0],[2]] => 8
[[4,1,0,0],[4,0,0],[4,0],[3]] => 8
[[4,1,0,0],[4,0,0],[4,0],[4]] => 4
[[4,1,0,0],[4,1,0],[1,0],[0]] => 4
[[4,1,0,0],[4,1,0],[1,0],[1]] => 4
[[4,1,0,0],[4,1,0],[1,1],[1]] => 8
[[4,1,0,0],[4,1,0],[2,0],[0]] => 4
[[4,1,0,0],[4,1,0],[2,0],[1]] => 8
[[4,1,0,0],[4,1,0],[2,0],[2]] => 4
[[4,1,0,0],[4,1,0],[2,1],[1]] => 8
[[4,1,0,0],[4,1,0],[2,1],[2]] => 8
[[4,1,0,0],[4,1,0],[3,0],[0]] => 4
[[4,1,0,0],[4,1,0],[3,0],[1]] => 8
[[4,1,0,0],[4,1,0],[3,0],[2]] => 8
[[4,1,0,0],[4,1,0],[3,0],[3]] => 4
[[4,1,0,0],[4,1,0],[3,1],[1]] => 8
[[4,1,0,0],[4,1,0],[3,1],[2]] => 8
[[4,1,0,0],[4,1,0],[3,1],[3]] => 8
[[4,1,0,0],[4,1,0],[4,0],[0]] => 4
[[4,1,0,0],[4,1,0],[4,0],[1]] => 8
[[4,1,0,0],[4,1,0],[4,0],[2]] => 8
[[4,1,0,0],[4,1,0],[4,0],[3]] => 8
[[4,1,0,0],[4,1,0],[4,0],[4]] => 4
[[4,1,0,0],[4,1,0],[4,1],[1]] => 4
[[4,1,0,0],[4,1,0],[4,1],[2]] => 4
[[4,1,0,0],[4,1,0],[4,1],[3]] => 4
[[4,1,0,0],[4,1,0],[4,1],[4]] => 4
[[3,2,0,0],[2,0,0],[0,0],[0]] => 4
[[3,2,0,0],[2,0,0],[1,0],[0]] => 4
[[3,2,0,0],[2,0,0],[1,0],[1]] => 4
[[3,2,0,0],[2,0,0],[2,0],[0]] => 4
[[3,2,0,0],[2,0,0],[2,0],[1]] => 4
[[3,2,0,0],[2,0,0],[2,0],[2]] => 4
[[3,2,0,0],[2,1,0],[1,0],[0]] => 8
[[3,2,0,0],[2,1,0],[1,0],[1]] => 8
[[3,2,0,0],[2,1,0],[1,1],[1]] => 12
[[3,2,0,0],[2,1,0],[2,0],[0]] => 8
[[3,2,0,0],[2,1,0],[2,0],[1]] => 12
[[3,2,0,0],[2,1,0],[2,0],[2]] => 8
[[3,2,0,0],[2,1,0],[2,1],[1]] => 8
[[3,2,0,0],[2,1,0],[2,1],[2]] => 8
[[3,2,0,0],[2,2,0],[2,0],[0]] => 8
[[3,2,0,0],[2,2,0],[2,0],[1]] => 12
[[3,2,0,0],[2,2,0],[2,0],[2]] => 8
[[3,2,0,0],[2,2,0],[2,1],[1]] => 12
[[3,2,0,0],[2,2,0],[2,1],[2]] => 12
[[3,2,0,0],[2,2,0],[2,2],[2]] => 8
[[3,2,0,0],[3,0,0],[0,0],[0]] => 4
[[3,2,0,0],[3,0,0],[1,0],[0]] => 8
[[3,2,0,0],[3,0,0],[1,0],[1]] => 8
[[3,2,0,0],[3,0,0],[2,0],[0]] => 8
[[3,2,0,0],[3,0,0],[2,0],[1]] => 12
[[3,2,0,0],[3,0,0],[2,0],[2]] => 8
[[3,2,0,0],[3,0,0],[3,0],[0]] => 4
[[3,2,0,0],[3,0,0],[3,0],[1]] => 8
[[3,2,0,0],[3,0,0],[3,0],[2]] => 8
[[3,2,0,0],[3,0,0],[3,0],[3]] => 4
[[3,2,0,0],[3,1,0],[1,0],[0]] => 4
[[3,2,0,0],[3,1,0],[1,0],[1]] => 4
[[3,2,0,0],[3,1,0],[1,1],[1]] => 12
[[3,2,0,0],[3,1,0],[2,0],[0]] => 8
[[3,2,0,0],[3,1,0],[2,0],[1]] => 12
[[3,2,0,0],[3,1,0],[2,0],[2]] => 8
[[3,2,0,0],[3,1,0],[2,1],[1]] => 12
[[3,2,0,0],[3,1,0],[2,1],[2]] => 12
[[3,2,0,0],[3,1,0],[3,0],[0]] => 4
[[3,2,0,0],[3,1,0],[3,0],[1]] => 12
[[3,2,0,0],[3,1,0],[3,0],[2]] => 12
[[3,2,0,0],[3,1,0],[3,0],[3]] => 4
[[3,2,0,0],[3,1,0],[3,1],[1]] => 4
[[3,2,0,0],[3,1,0],[3,1],[2]] => 8
[[3,2,0,0],[3,1,0],[3,1],[3]] => 4
[[3,2,0,0],[3,2,0],[2,0],[0]] => 4
[[3,2,0,0],[3,2,0],[2,0],[1]] => 4
[[3,2,0,0],[3,2,0],[2,0],[2]] => 4
[[3,2,0,0],[3,2,0],[2,1],[1]] => 8
[[3,2,0,0],[3,2,0],[2,1],[2]] => 8
[[3,2,0,0],[3,2,0],[2,2],[2]] => 8
[[3,2,0,0],[3,2,0],[3,0],[0]] => 4
[[3,2,0,0],[3,2,0],[3,0],[1]] => 8
[[3,2,0,0],[3,2,0],[3,0],[2]] => 8
[[3,2,0,0],[3,2,0],[3,0],[3]] => 4
[[3,2,0,0],[3,2,0],[3,1],[1]] => 4
[[3,2,0,0],[3,2,0],[3,1],[2]] => 8
[[3,2,0,0],[3,2,0],[3,1],[3]] => 4
[[3,2,0,0],[3,2,0],[3,2],[2]] => 4
[[3,2,0,0],[3,2,0],[3,2],[3]] => 4
[[3,1,1,0],[1,1,0],[1,0],[0]] => 4
[[3,1,1,0],[1,1,0],[1,0],[1]] => 4
[[3,1,1,0],[1,1,0],[1,1],[1]] => 4
[[3,1,1,0],[1,1,1],[1,1],[1]] => 12
[[3,1,1,0],[2,1,0],[1,0],[0]] => 4
[[3,1,1,0],[2,1,0],[1,0],[1]] => 4
[[3,1,1,0],[2,1,0],[1,1],[1]] => 12
[[3,1,1,0],[2,1,0],[2,0],[0]] => 4
[[3,1,1,0],[2,1,0],[2,0],[1]] => 12
[[3,1,1,0],[2,1,0],[2,0],[2]] => 4
[[3,1,1,0],[2,1,0],[2,1],[1]] => 4
[[3,1,1,0],[2,1,0],[2,1],[2]] => 4
[[3,1,1,0],[2,1,1],[1,1],[1]] => 12
[[3,1,1,0],[2,1,1],[2,1],[1]] => 12
[[3,1,1,0],[2,1,1],[2,1],[2]] => 12
[[3,1,1,0],[3,1,0],[1,0],[0]] => 4
[[3,1,1,0],[3,1,0],[1,0],[1]] => 4
[[3,1,1,0],[3,1,0],[1,1],[1]] => 12
[[3,1,1,0],[3,1,0],[2,0],[0]] => 4
[[3,1,1,0],[3,1,0],[2,0],[1]] => 12
[[3,1,1,0],[3,1,0],[2,0],[2]] => 4
[[3,1,1,0],[3,1,0],[2,1],[1]] => 12
[[3,1,1,0],[3,1,0],[2,1],[2]] => 12
[[3,1,1,0],[3,1,0],[3,0],[0]] => 4
[[3,1,1,0],[3,1,0],[3,0],[1]] => 12
[[3,1,1,0],[3,1,0],[3,0],[2]] => 12
[[3,1,1,0],[3,1,0],[3,0],[3]] => 4
[[3,1,1,0],[3,1,0],[3,1],[1]] => 4
[[3,1,1,0],[3,1,0],[3,1],[2]] => 4
[[3,1,1,0],[3,1,0],[3,1],[3]] => 4
[[3,1,1,0],[3,1,1],[1,1],[1]] => 4
[[3,1,1,0],[3,1,1],[2,1],[1]] => 4
[[3,1,1,0],[3,1,1],[2,1],[2]] => 4
[[3,1,1,0],[3,1,1],[3,1],[1]] => 4
[[3,1,1,0],[3,1,1],[3,1],[2]] => 4
[[3,1,1,0],[3,1,1],[3,1],[3]] => 4
[[2,2,1,0],[2,1,0],[1,0],[0]] => 4
[[2,2,1,0],[2,1,0],[1,0],[1]] => 4
[[2,2,1,0],[2,1,0],[1,1],[1]] => 8
[[2,2,1,0],[2,1,0],[2,0],[0]] => 4
[[2,2,1,0],[2,1,0],[2,0],[1]] => 8
[[2,2,1,0],[2,1,0],[2,0],[2]] => 4
[[2,2,1,0],[2,1,0],[2,1],[1]] => 4
[[2,2,1,0],[2,1,0],[2,1],[2]] => 4
[[2,2,1,0],[2,1,1],[1,1],[1]] => 8
[[2,2,1,0],[2,1,1],[2,1],[1]] => 8
[[2,2,1,0],[2,1,1],[2,1],[2]] => 8
[[2,2,1,0],[2,2,0],[2,0],[0]] => 4
[[2,2,1,0],[2,2,0],[2,0],[1]] => 8
[[2,2,1,0],[2,2,0],[2,0],[2]] => 4
[[2,2,1,0],[2,2,0],[2,1],[1]] => 8
[[2,2,1,0],[2,2,0],[2,1],[2]] => 8
[[2,2,1,0],[2,2,0],[2,2],[2]] => 4
[[2,2,1,0],[2,2,1],[2,1],[1]] => 4
[[2,2,1,0],[2,2,1],[2,1],[2]] => 4
[[2,2,1,0],[2,2,1],[2,2],[2]] => 4
[[2,1,1,1],[1,1,1],[1,1],[1]] => 4
[[2,1,1,1],[2,1,1],[1,1],[1]] => 4
[[2,1,1,1],[2,1,1],[2,1],[1]] => 4
[[2,1,1,1],[2,1,1],[2,1],[2]] => 4
[[1,0,0,0,0],[0,0,0,0],[0,0,0],[0,0],[0]] => 5
[[1,0,0,0,0],[1,0,0,0],[0,0,0],[0,0],[0]] => 5
[[1,0,0,0,0],[1,0,0,0],[1,0,0],[0,0],[0]] => 5
[[1,0,0,0,0],[1,0,0,0],[1,0,0],[1,0],[0]] => 5
[[1,0,0,0,0],[1,0,0,0],[1,0,0],[1,0],[1]] => 5
[[2,0,0,0,0],[0,0,0,0],[0,0,0],[0,0],[0]] => 5
[[2,0,0,0,0],[1,0,0,0],[0,0,0],[0,0],[0]] => 5
[[2,0,0,0,0],[1,0,0,0],[1,0,0],[0,0],[0]] => 5
[[2,0,0,0,0],[1,0,0,0],[1,0,0],[1,0],[0]] => 5
[[2,0,0,0,0],[1,0,0,0],[1,0,0],[1,0],[1]] => 5
[[2,0,0,0,0],[2,0,0,0],[0,0,0],[0,0],[0]] => 5
[[2,0,0,0,0],[2,0,0,0],[1,0,0],[0,0],[0]] => 5
[[2,0,0,0,0],[2,0,0,0],[1,0,0],[1,0],[0]] => 5
[[2,0,0,0,0],[2,0,0,0],[1,0,0],[1,0],[1]] => 5
[[2,0,0,0,0],[2,0,0,0],[2,0,0],[0,0],[0]] => 5
[[2,0,0,0,0],[2,0,0,0],[2,0,0],[1,0],[0]] => 5
[[2,0,0,0,0],[2,0,0,0],[2,0,0],[1,0],[1]] => 5
[[2,0,0,0,0],[2,0,0,0],[2,0,0],[2,0],[0]] => 5
[[2,0,0,0,0],[2,0,0,0],[2,0,0],[2,0],[1]] => 5
[[2,0,0,0,0],[2,0,0,0],[2,0,0],[2,0],[2]] => 5
[[1,1,0,0,0],[1,0,0,0],[0,0,0],[0,0],[0]] => 5
[[1,1,0,0,0],[1,0,0,0],[1,0,0],[0,0],[0]] => 5
[[1,1,0,0,0],[1,0,0,0],[1,0,0],[1,0],[0]] => 5
[[1,1,0,0,0],[1,0,0,0],[1,0,0],[1,0],[1]] => 5
[[1,1,0,0,0],[1,1,0,0],[1,0,0],[0,0],[0]] => 5
[[1,1,0,0,0],[1,1,0,0],[1,0,0],[1,0],[0]] => 5
[[1,1,0,0,0],[1,1,0,0],[1,0,0],[1,0],[1]] => 5
[[1,1,0,0,0],[1,1,0,0],[1,1,0],[1,0],[0]] => 5
[[1,1,0,0,0],[1,1,0,0],[1,1,0],[1,0],[1]] => 5
[[1,1,0,0,0],[1,1,0,0],[1,1,0],[1,1],[1]] => 5
[[3,0,0,0,0],[0,0,0,0],[0,0,0],[0,0],[0]] => 5
[[3,0,0,0,0],[1,0,0,0],[0,0,0],[0,0],[0]] => 5
[[3,0,0,0,0],[1,0,0,0],[1,0,0],[0,0],[0]] => 5
[[3,0,0,0,0],[1,0,0,0],[1,0,0],[1,0],[0]] => 5
[[3,0,0,0,0],[1,0,0,0],[1,0,0],[1,0],[1]] => 5
[[3,0,0,0,0],[2,0,0,0],[0,0,0],[0,0],[0]] => 5
[[3,0,0,0,0],[2,0,0,0],[1,0,0],[0,0],[0]] => 5
[[3,0,0,0,0],[2,0,0,0],[1,0,0],[1,0],[0]] => 5
[[3,0,0,0,0],[2,0,0,0],[1,0,0],[1,0],[1]] => 5
[[3,0,0,0,0],[2,0,0,0],[2,0,0],[0,0],[0]] => 5
[[3,0,0,0,0],[2,0,0,0],[2,0,0],[1,0],[0]] => 5
[[3,0,0,0,0],[2,0,0,0],[2,0,0],[1,0],[1]] => 5
[[3,0,0,0,0],[2,0,0,0],[2,0,0],[2,0],[0]] => 5
[[3,0,0,0,0],[2,0,0,0],[2,0,0],[2,0],[1]] => 5
[[3,0,0,0,0],[2,0,0,0],[2,0,0],[2,0],[2]] => 5
[[3,0,0,0,0],[3,0,0,0],[0,0,0],[0,0],[0]] => 5
[[3,0,0,0,0],[3,0,0,0],[1,0,0],[0,0],[0]] => 5
[[3,0,0,0,0],[3,0,0,0],[1,0,0],[1,0],[0]] => 5
[[3,0,0,0,0],[3,0,0,0],[1,0,0],[1,0],[1]] => 5
[[3,0,0,0,0],[3,0,0,0],[2,0,0],[0,0],[0]] => 5
[[3,0,0,0,0],[3,0,0,0],[2,0,0],[1,0],[0]] => 5
[[3,0,0,0,0],[3,0,0,0],[2,0,0],[1,0],[1]] => 5
[[3,0,0,0,0],[3,0,0,0],[2,0,0],[2,0],[0]] => 5
[[3,0,0,0,0],[3,0,0,0],[2,0,0],[2,0],[1]] => 5
[[3,0,0,0,0],[3,0,0,0],[2,0,0],[2,0],[2]] => 5
[[3,0,0,0,0],[3,0,0,0],[3,0,0],[0,0],[0]] => 5
[[3,0,0,0,0],[3,0,0,0],[3,0,0],[1,0],[0]] => 5
[[3,0,0,0,0],[3,0,0,0],[3,0,0],[1,0],[1]] => 5
[[3,0,0,0,0],[3,0,0,0],[3,0,0],[2,0],[0]] => 5
[[3,0,0,0,0],[3,0,0,0],[3,0,0],[2,0],[1]] => 5
[[3,0,0,0,0],[3,0,0,0],[3,0,0],[2,0],[2]] => 5
[[3,0,0,0,0],[3,0,0,0],[3,0,0],[3,0],[0]] => 5
[[3,0,0,0,0],[3,0,0,0],[3,0,0],[3,0],[1]] => 5
[[3,0,0,0,0],[3,0,0,0],[3,0,0],[3,0],[2]] => 5
[[3,0,0,0,0],[3,0,0,0],[3,0,0],[3,0],[3]] => 5
[[2,1,0,0,0],[1,0,0,0],[0,0,0],[0,0],[0]] => 5
[[2,1,0,0,0],[1,0,0,0],[1,0,0],[0,0],[0]] => 5
[[2,1,0,0,0],[1,0,0,0],[1,0,0],[1,0],[0]] => 5
[[2,1,0,0,0],[1,0,0,0],[1,0,0],[1,0],[1]] => 5
[[2,1,0,0,0],[1,1,0,0],[1,0,0],[0,0],[0]] => 10
[[2,1,0,0,0],[1,1,0,0],[1,0,0],[1,0],[0]] => 10
[[2,1,0,0,0],[1,1,0,0],[1,0,0],[1,0],[1]] => 10
[[2,1,0,0,0],[1,1,0,0],[1,1,0],[1,0],[0]] => 10
[[2,1,0,0,0],[1,1,0,0],[1,1,0],[1,0],[1]] => 10
[[2,1,0,0,0],[1,1,0,0],[1,1,0],[1,1],[1]] => 10
[[2,1,0,0,0],[2,0,0,0],[0,0,0],[0,0],[0]] => 5
[[2,1,0,0,0],[2,0,0,0],[1,0,0],[0,0],[0]] => 10
[[2,1,0,0,0],[2,0,0,0],[1,0,0],[1,0],[0]] => 10
[[2,1,0,0,0],[2,0,0,0],[1,0,0],[1,0],[1]] => 10
[[2,1,0,0,0],[2,0,0,0],[2,0,0],[0,0],[0]] => 5
[[2,1,0,0,0],[2,0,0,0],[2,0,0],[1,0],[0]] => 10
[[2,1,0,0,0],[2,0,0,0],[2,0,0],[1,0],[1]] => 10
[[2,1,0,0,0],[2,0,0,0],[2,0,0],[2,0],[0]] => 5
[[2,1,0,0,0],[2,0,0,0],[2,0,0],[2,0],[1]] => 10
[[2,1,0,0,0],[2,0,0,0],[2,0,0],[2,0],[2]] => 5
[[2,1,0,0,0],[2,1,0,0],[1,0,0],[0,0],[0]] => 5
[[2,1,0,0,0],[2,1,0,0],[1,0,0],[1,0],[0]] => 5
[[2,1,0,0,0],[2,1,0,0],[1,0,0],[1,0],[1]] => 5
[[2,1,0,0,0],[2,1,0,0],[1,1,0],[1,0],[0]] => 10
[[2,1,0,0,0],[2,1,0,0],[1,1,0],[1,0],[1]] => 10
[[2,1,0,0,0],[2,1,0,0],[1,1,0],[1,1],[1]] => 10
[[2,1,0,0,0],[2,1,0,0],[2,0,0],[0,0],[0]] => 5
[[2,1,0,0,0],[2,1,0,0],[2,0,0],[1,0],[0]] => 10
[[2,1,0,0,0],[2,1,0,0],[2,0,0],[1,0],[1]] => 10
[[2,1,0,0,0],[2,1,0,0],[2,0,0],[2,0],[0]] => 5
[[2,1,0,0,0],[2,1,0,0],[2,0,0],[2,0],[1]] => 10
[[2,1,0,0,0],[2,1,0,0],[2,0,0],[2,0],[2]] => 5
[[2,1,0,0,0],[2,1,0,0],[2,1,0],[1,0],[0]] => 5
[[2,1,0,0,0],[2,1,0,0],[2,1,0],[1,0],[1]] => 5
[[2,1,0,0,0],[2,1,0,0],[2,1,0],[1,1],[1]] => 10
[[2,1,0,0,0],[2,1,0,0],[2,1,0],[2,0],[0]] => 5
[[2,1,0,0,0],[2,1,0,0],[2,1,0],[2,0],[1]] => 10
[[2,1,0,0,0],[2,1,0,0],[2,1,0],[2,0],[2]] => 5
[[2,1,0,0,0],[2,1,0,0],[2,1,0],[2,1],[1]] => 5
[[2,1,0,0,0],[2,1,0,0],[2,1,0],[2,1],[2]] => 5
[[1,1,1,0,0],[1,1,0,0],[1,0,0],[0,0],[0]] => 5
[[1,1,1,0,0],[1,1,0,0],[1,0,0],[1,0],[0]] => 5
[[1,1,1,0,0],[1,1,0,0],[1,0,0],[1,0],[1]] => 5
[[1,1,1,0,0],[1,1,0,0],[1,1,0],[1,0],[0]] => 5
[[1,1,1,0,0],[1,1,0,0],[1,1,0],[1,0],[1]] => 5
[[1,1,1,0,0],[1,1,0,0],[1,1,0],[1,1],[1]] => 5
[[1,1,1,0,0],[1,1,1,0],[1,1,0],[1,0],[0]] => 5
[[1,1,1,0,0],[1,1,1,0],[1,1,0],[1,0],[1]] => 5
[[1,1,1,0,0],[1,1,1,0],[1,1,0],[1,1],[1]] => 5
[[1,1,1,0,0],[1,1,1,0],[1,1,1],[1,1],[1]] => 5
[[4,0,0,0,0],[0,0,0,0],[0,0,0],[0,0],[0]] => 5
[[4,0,0,0,0],[1,0,0,0],[0,0,0],[0,0],[0]] => 5
[[4,0,0,0,0],[1,0,0,0],[1,0,0],[0,0],[0]] => 5
[[4,0,0,0,0],[1,0,0,0],[1,0,0],[1,0],[0]] => 5
[[4,0,0,0,0],[1,0,0,0],[1,0,0],[1,0],[1]] => 5
[[4,0,0,0,0],[2,0,0,0],[0,0,0],[0,0],[0]] => 5
[[4,0,0,0,0],[2,0,0,0],[1,0,0],[0,0],[0]] => 5
[[4,0,0,0,0],[2,0,0,0],[1,0,0],[1,0],[0]] => 5
[[4,0,0,0,0],[2,0,0,0],[1,0,0],[1,0],[1]] => 5
[[4,0,0,0,0],[2,0,0,0],[2,0,0],[0,0],[0]] => 5
[[4,0,0,0,0],[2,0,0,0],[2,0,0],[1,0],[0]] => 5
[[4,0,0,0,0],[2,0,0,0],[2,0,0],[1,0],[1]] => 5
[[4,0,0,0,0],[2,0,0,0],[2,0,0],[2,0],[0]] => 5
[[4,0,0,0,0],[2,0,0,0],[2,0,0],[2,0],[1]] => 5
[[4,0,0,0,0],[2,0,0,0],[2,0,0],[2,0],[2]] => 5
[[4,0,0,0,0],[3,0,0,0],[0,0,0],[0,0],[0]] => 5
[[4,0,0,0,0],[3,0,0,0],[1,0,0],[0,0],[0]] => 5
[[4,0,0,0,0],[3,0,0,0],[1,0,0],[1,0],[0]] => 5
[[4,0,0,0,0],[3,0,0,0],[1,0,0],[1,0],[1]] => 5
[[4,0,0,0,0],[3,0,0,0],[2,0,0],[0,0],[0]] => 5
[[4,0,0,0,0],[3,0,0,0],[2,0,0],[1,0],[0]] => 5
[[4,0,0,0,0],[3,0,0,0],[2,0,0],[1,0],[1]] => 5
[[4,0,0,0,0],[3,0,0,0],[2,0,0],[2,0],[0]] => 5
[[4,0,0,0,0],[3,0,0,0],[2,0,0],[2,0],[1]] => 5
[[4,0,0,0,0],[3,0,0,0],[2,0,0],[2,0],[2]] => 5
[[4,0,0,0,0],[3,0,0,0],[3,0,0],[0,0],[0]] => 5
[[4,0,0,0,0],[3,0,0,0],[3,0,0],[1,0],[0]] => 5
[[4,0,0,0,0],[3,0,0,0],[3,0,0],[1,0],[1]] => 5
[[4,0,0,0,0],[3,0,0,0],[3,0,0],[2,0],[0]] => 5
[[4,0,0,0,0],[3,0,0,0],[3,0,0],[2,0],[1]] => 5
[[4,0,0,0,0],[3,0,0,0],[3,0,0],[2,0],[2]] => 5
[[4,0,0,0,0],[3,0,0,0],[3,0,0],[3,0],[0]] => 5
[[4,0,0,0,0],[3,0,0,0],[3,0,0],[3,0],[1]] => 5
[[4,0,0,0,0],[3,0,0,0],[3,0,0],[3,0],[2]] => 5
[[4,0,0,0,0],[3,0,0,0],[3,0,0],[3,0],[3]] => 5
[[4,0,0,0,0],[4,0,0,0],[0,0,0],[0,0],[0]] => 5
[[4,0,0,0,0],[4,0,0,0],[1,0,0],[0,0],[0]] => 5
[[4,0,0,0,0],[4,0,0,0],[1,0,0],[1,0],[0]] => 5
[[4,0,0,0,0],[4,0,0,0],[1,0,0],[1,0],[1]] => 5
[[4,0,0,0,0],[4,0,0,0],[2,0,0],[0,0],[0]] => 5
[[4,0,0,0,0],[4,0,0,0],[2,0,0],[1,0],[0]] => 5
[[4,0,0,0,0],[4,0,0,0],[2,0,0],[1,0],[1]] => 5
[[4,0,0,0,0],[4,0,0,0],[2,0,0],[2,0],[0]] => 5
[[4,0,0,0,0],[4,0,0,0],[2,0,0],[2,0],[1]] => 5
[[4,0,0,0,0],[4,0,0,0],[2,0,0],[2,0],[2]] => 5
[[4,0,0,0,0],[4,0,0,0],[3,0,0],[0,0],[0]] => 5
[[4,0,0,0,0],[4,0,0,0],[3,0,0],[1,0],[0]] => 5
[[4,0,0,0,0],[4,0,0,0],[3,0,0],[1,0],[1]] => 5
[[4,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[0]] => 5
[[4,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]] => 5
[[4,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[2]] => 5
[[4,0,0,0,0],[4,0,0,0],[3,0,0],[3,0],[0]] => 5
[[4,0,0,0,0],[4,0,0,0],[3,0,0],[3,0],[1]] => 5
[[4,0,0,0,0],[4,0,0,0],[3,0,0],[3,0],[2]] => 5
[[4,0,0,0,0],[4,0,0,0],[3,0,0],[3,0],[3]] => 5
[[4,0,0,0,0],[4,0,0,0],[4,0,0],[0,0],[0]] => 5
[[4,0,0,0,0],[4,0,0,0],[4,0,0],[1,0],[0]] => 5
[[4,0,0,0,0],[4,0,0,0],[4,0,0],[1,0],[1]] => 5
[[4,0,0,0,0],[4,0,0,0],[4,0,0],[2,0],[0]] => 5
[[4,0,0,0,0],[4,0,0,0],[4,0,0],[2,0],[1]] => 5
[[4,0,0,0,0],[4,0,0,0],[4,0,0],[2,0],[2]] => 5
[[4,0,0,0,0],[4,0,0,0],[4,0,0],[3,0],[0]] => 5
[[4,0,0,0,0],[4,0,0,0],[4,0,0],[3,0],[1]] => 5
[[4,0,0,0,0],[4,0,0,0],[4,0,0],[3,0],[2]] => 5
[[4,0,0,0,0],[4,0,0,0],[4,0,0],[3,0],[3]] => 5
[[4,0,0,0,0],[4,0,0,0],[4,0,0],[4,0],[0]] => 5
[[4,0,0,0,0],[4,0,0,0],[4,0,0],[4,0],[1]] => 5
[[4,0,0,0,0],[4,0,0,0],[4,0,0],[4,0],[2]] => 5
[[4,0,0,0,0],[4,0,0,0],[4,0,0],[4,0],[3]] => 5
[[4,0,0,0,0],[4,0,0,0],[4,0,0],[4,0],[4]] => 5
[[3,1,0,0,0],[1,0,0,0],[0,0,0],[0,0],[0]] => 5
[[3,1,0,0,0],[1,0,0,0],[1,0,0],[0,0],[0]] => 5
[[3,1,0,0,0],[1,0,0,0],[1,0,0],[1,0],[0]] => 5
[[3,1,0,0,0],[1,0,0,0],[1,0,0],[1,0],[1]] => 5
[[3,1,0,0,0],[1,1,0,0],[1,0,0],[0,0],[0]] => 10
[[3,1,0,0,0],[1,1,0,0],[1,0,0],[1,0],[0]] => 10
[[3,1,0,0,0],[1,1,0,0],[1,0,0],[1,0],[1]] => 10
[[3,1,0,0,0],[1,1,0,0],[1,1,0],[1,0],[0]] => 10
[[3,1,0,0,0],[1,1,0,0],[1,1,0],[1,0],[1]] => 10
[[3,1,0,0,0],[1,1,0,0],[1,1,0],[1,1],[1]] => 10
[[3,1,0,0,0],[2,0,0,0],[0,0,0],[0,0],[0]] => 5
[[3,1,0,0,0],[2,0,0,0],[1,0,0],[0,0],[0]] => 10
[[3,1,0,0,0],[2,0,0,0],[1,0,0],[1,0],[0]] => 10
[[3,1,0,0,0],[2,0,0,0],[1,0,0],[1,0],[1]] => 10
[[3,1,0,0,0],[2,0,0,0],[2,0,0],[0,0],[0]] => 5
[[3,1,0,0,0],[2,0,0,0],[2,0,0],[1,0],[0]] => 10
[[3,1,0,0,0],[2,0,0,0],[2,0,0],[1,0],[1]] => 10
[[3,1,0,0,0],[2,0,0,0],[2,0,0],[2,0],[0]] => 5
[[3,1,0,0,0],[2,0,0,0],[2,0,0],[2,0],[1]] => 10
[[3,1,0,0,0],[2,0,0,0],[2,0,0],[2,0],[2]] => 5
[[3,1,0,0,0],[2,1,0,0],[1,0,0],[0,0],[0]] => 10
[[3,1,0,0,0],[2,1,0,0],[1,0,0],[1,0],[0]] => 10
[[3,1,0,0,0],[2,1,0,0],[1,0,0],[1,0],[1]] => 10
[[3,1,0,0,0],[2,1,0,0],[1,1,0],[1,0],[0]] => 15
[[3,1,0,0,0],[2,1,0,0],[1,1,0],[1,0],[1]] => 15
[[3,1,0,0,0],[2,1,0,0],[1,1,0],[1,1],[1]] => 15
[[3,1,0,0,0],[2,1,0,0],[2,0,0],[0,0],[0]] => 10
[[3,1,0,0,0],[2,1,0,0],[2,0,0],[1,0],[0]] => 15
[[3,1,0,0,0],[2,1,0,0],[2,0,0],[1,0],[1]] => 15
[[3,1,0,0,0],[2,1,0,0],[2,0,0],[2,0],[0]] => 10
[[3,1,0,0,0],[2,1,0,0],[2,0,0],[2,0],[1]] => 15
[[3,1,0,0,0],[2,1,0,0],[2,0,0],[2,0],[2]] => 10
[[3,1,0,0,0],[2,1,0,0],[2,1,0],[1,0],[0]] => 10
[[3,1,0,0,0],[2,1,0,0],[2,1,0],[1,0],[1]] => 10
[[3,1,0,0,0],[2,1,0,0],[2,1,0],[1,1],[1]] => 15
[[3,1,0,0,0],[2,1,0,0],[2,1,0],[2,0],[0]] => 10
[[3,1,0,0,0],[2,1,0,0],[2,1,0],[2,0],[1]] => 15
[[3,1,0,0,0],[2,1,0,0],[2,1,0],[2,0],[2]] => 10
[[3,1,0,0,0],[2,1,0,0],[2,1,0],[2,1],[1]] => 10
[[3,1,0,0,0],[2,1,0,0],[2,1,0],[2,1],[2]] => 10
[[3,1,0,0,0],[3,0,0,0],[0,0,0],[0,0],[0]] => 5
[[3,1,0,0,0],[3,0,0,0],[1,0,0],[0,0],[0]] => 10
[[3,1,0,0,0],[3,0,0,0],[1,0,0],[1,0],[0]] => 10
[[3,1,0,0,0],[3,0,0,0],[1,0,0],[1,0],[1]] => 10
[[3,1,0,0,0],[3,0,0,0],[2,0,0],[0,0],[0]] => 10
[[3,1,0,0,0],[3,0,0,0],[2,0,0],[1,0],[0]] => 15
[[3,1,0,0,0],[3,0,0,0],[2,0,0],[1,0],[1]] => 15
[[3,1,0,0,0],[3,0,0,0],[2,0,0],[2,0],[0]] => 10
[[3,1,0,0,0],[3,0,0,0],[2,0,0],[2,0],[1]] => 15
[[3,1,0,0,0],[3,0,0,0],[2,0,0],[2,0],[2]] => 10
[[3,1,0,0,0],[3,0,0,0],[3,0,0],[0,0],[0]] => 5
[[3,1,0,0,0],[3,0,0,0],[3,0,0],[1,0],[0]] => 10
[[3,1,0,0,0],[3,0,0,0],[3,0,0],[1,0],[1]] => 10
[[3,1,0,0,0],[3,0,0,0],[3,0,0],[2,0],[0]] => 10
[[3,1,0,0,0],[3,0,0,0],[3,0,0],[2,0],[1]] => 15
[[3,1,0,0,0],[3,0,0,0],[3,0,0],[2,0],[2]] => 10
[[3,1,0,0,0],[3,0,0,0],[3,0,0],[3,0],[0]] => 5
[[3,1,0,0,0],[3,0,0,0],[3,0,0],[3,0],[1]] => 10
[[3,1,0,0,0],[3,0,0,0],[3,0,0],[3,0],[2]] => 10
[[3,1,0,0,0],[3,0,0,0],[3,0,0],[3,0],[3]] => 5
[[3,1,0,0,0],[3,1,0,0],[1,0,0],[0,0],[0]] => 5
[[3,1,0,0,0],[3,1,0,0],[1,0,0],[1,0],[0]] => 5
[[3,1,0,0,0],[3,1,0,0],[1,0,0],[1,0],[1]] => 5
[[3,1,0,0,0],[3,1,0,0],[1,1,0],[1,0],[0]] => 10
[[3,1,0,0,0],[3,1,0,0],[1,1,0],[1,0],[1]] => 10
[[3,1,0,0,0],[3,1,0,0],[1,1,0],[1,1],[1]] => 10
[[3,1,0,0,0],[3,1,0,0],[2,0,0],[0,0],[0]] => 5
[[3,1,0,0,0],[3,1,0,0],[2,0,0],[1,0],[0]] => 10
[[3,1,0,0,0],[3,1,0,0],[2,0,0],[1,0],[1]] => 10
[[3,1,0,0,0],[3,1,0,0],[2,0,0],[2,0],[0]] => 5
[[3,1,0,0,0],[3,1,0,0],[2,0,0],[2,0],[1]] => 10
[[3,1,0,0,0],[3,1,0,0],[2,0,0],[2,0],[2]] => 5
[[3,1,0,0,0],[3,1,0,0],[2,1,0],[1,0],[0]] => 10
[[3,1,0,0,0],[3,1,0,0],[2,1,0],[1,0],[1]] => 10
[[3,1,0,0,0],[3,1,0,0],[2,1,0],[1,1],[1]] => 15
[[3,1,0,0,0],[3,1,0,0],[2,1,0],[2,0],[0]] => 10
[[3,1,0,0,0],[3,1,0,0],[2,1,0],[2,0],[1]] => 15
[[3,1,0,0,0],[3,1,0,0],[2,1,0],[2,0],[2]] => 10
[[3,1,0,0,0],[3,1,0,0],[2,1,0],[2,1],[1]] => 10
[[3,1,0,0,0],[3,1,0,0],[2,1,0],[2,1],[2]] => 10
[[3,1,0,0,0],[3,1,0,0],[3,0,0],[0,0],[0]] => 5
[[3,1,0,0,0],[3,1,0,0],[3,0,0],[1,0],[0]] => 10
[[3,1,0,0,0],[3,1,0,0],[3,0,0],[1,0],[1]] => 10
[[3,1,0,0,0],[3,1,0,0],[3,0,0],[2,0],[0]] => 10
[[3,1,0,0,0],[3,1,0,0],[3,0,0],[2,0],[1]] => 15
[[3,1,0,0,0],[3,1,0,0],[3,0,0],[2,0],[2]] => 10
[[3,1,0,0,0],[3,1,0,0],[3,0,0],[3,0],[0]] => 5
[[3,1,0,0,0],[3,1,0,0],[3,0,0],[3,0],[1]] => 10
[[3,1,0,0,0],[3,1,0,0],[3,0,0],[3,0],[2]] => 10
[[3,1,0,0,0],[3,1,0,0],[3,0,0],[3,0],[3]] => 5
[[3,1,0,0,0],[3,1,0,0],[3,1,0],[1,0],[0]] => 5
[[3,1,0,0,0],[3,1,0,0],[3,1,0],[1,0],[1]] => 5
[[3,1,0,0,0],[3,1,0,0],[3,1,0],[1,1],[1]] => 10
[[3,1,0,0,0],[3,1,0,0],[3,1,0],[2,0],[0]] => 5
[[3,1,0,0,0],[3,1,0,0],[3,1,0],[2,0],[1]] => 10
[[3,1,0,0,0],[3,1,0,0],[3,1,0],[2,0],[2]] => 5
[[3,1,0,0,0],[3,1,0,0],[3,1,0],[2,1],[1]] => 10
[[3,1,0,0,0],[3,1,0,0],[3,1,0],[2,1],[2]] => 10
[[3,1,0,0,0],[3,1,0,0],[3,1,0],[3,0],[0]] => 5
[[3,1,0,0,0],[3,1,0,0],[3,1,0],[3,0],[1]] => 10
[[3,1,0,0,0],[3,1,0,0],[3,1,0],[3,0],[2]] => 10
[[3,1,0,0,0],[3,1,0,0],[3,1,0],[3,0],[3]] => 5
[[3,1,0,0,0],[3,1,0,0],[3,1,0],[3,1],[1]] => 5
[[3,1,0,0,0],[3,1,0,0],[3,1,0],[3,1],[2]] => 5
[[3,1,0,0,0],[3,1,0,0],[3,1,0],[3,1],[3]] => 5
[[2,2,0,0,0],[2,0,0,0],[0,0,0],[0,0],[0]] => 5
[[2,2,0,0,0],[2,0,0,0],[1,0,0],[0,0],[0]] => 5
[[2,2,0,0,0],[2,0,0,0],[1,0,0],[1,0],[0]] => 5
[[2,2,0,0,0],[2,0,0,0],[1,0,0],[1,0],[1]] => 5
[[2,2,0,0,0],[2,0,0,0],[2,0,0],[0,0],[0]] => 5
[[2,2,0,0,0],[2,0,0,0],[2,0,0],[1,0],[0]] => 5
[[2,2,0,0,0],[2,0,0,0],[2,0,0],[1,0],[1]] => 5
[[2,2,0,0,0],[2,0,0,0],[2,0,0],[2,0],[0]] => 5
[[2,2,0,0,0],[2,0,0,0],[2,0,0],[2,0],[1]] => 5
[[2,2,0,0,0],[2,0,0,0],[2,0,0],[2,0],[2]] => 5
[[2,2,0,0,0],[2,1,0,0],[1,0,0],[0,0],[0]] => 5
[[2,2,0,0,0],[2,1,0,0],[1,0,0],[1,0],[0]] => 5
[[2,2,0,0,0],[2,1,0,0],[1,0,0],[1,0],[1]] => 5
[[2,2,0,0,0],[2,1,0,0],[1,1,0],[1,0],[0]] => 5
[[2,2,0,0,0],[2,1,0,0],[1,1,0],[1,0],[1]] => 5
[[2,2,0,0,0],[2,1,0,0],[1,1,0],[1,1],[1]] => 5
[[2,2,0,0,0],[2,1,0,0],[2,0,0],[0,0],[0]] => 5
[[2,2,0,0,0],[2,1,0,0],[2,0,0],[1,0],[0]] => 5
[[2,2,0,0,0],[2,1,0,0],[2,0,0],[1,0],[1]] => 5
[[2,2,0,0,0],[2,1,0,0],[2,0,0],[2,0],[0]] => 5
[[2,2,0,0,0],[2,1,0,0],[2,0,0],[2,0],[1]] => 5
[[2,2,0,0,0],[2,1,0,0],[2,0,0],[2,0],[2]] => 5
[[2,2,0,0,0],[2,1,0,0],[2,1,0],[1,0],[0]] => 5
[[2,2,0,0,0],[2,1,0,0],[2,1,0],[1,0],[1]] => 5
[[2,2,0,0,0],[2,1,0,0],[2,1,0],[1,1],[1]] => 5
[[2,2,0,0,0],[2,1,0,0],[2,1,0],[2,0],[0]] => 5
[[2,2,0,0,0],[2,1,0,0],[2,1,0],[2,0],[1]] => 5
[[2,2,0,0,0],[2,1,0,0],[2,1,0],[2,0],[2]] => 5
[[2,2,0,0,0],[2,1,0,0],[2,1,0],[2,1],[1]] => 5
[[2,2,0,0,0],[2,1,0,0],[2,1,0],[2,1],[2]] => 5
[[2,2,0,0,0],[2,2,0,0],[2,0,0],[0,0],[0]] => 5
[[2,2,0,0,0],[2,2,0,0],[2,0,0],[1,0],[0]] => 5
[[2,2,0,0,0],[2,2,0,0],[2,0,0],[1,0],[1]] => 5
[[2,2,0,0,0],[2,2,0,0],[2,0,0],[2,0],[0]] => 5
[[2,2,0,0,0],[2,2,0,0],[2,0,0],[2,0],[1]] => 5
[[2,2,0,0,0],[2,2,0,0],[2,0,0],[2,0],[2]] => 5
[[2,2,0,0,0],[2,2,0,0],[2,1,0],[1,0],[0]] => 5
[[2,2,0,0,0],[2,2,0,0],[2,1,0],[1,0],[1]] => 5
[[2,2,0,0,0],[2,2,0,0],[2,1,0],[1,1],[1]] => 5
[[2,2,0,0,0],[2,2,0,0],[2,1,0],[2,0],[0]] => 5
[[2,2,0,0,0],[2,2,0,0],[2,1,0],[2,0],[1]] => 5
[[2,2,0,0,0],[2,2,0,0],[2,1,0],[2,0],[2]] => 5
[[2,2,0,0,0],[2,2,0,0],[2,1,0],[2,1],[1]] => 5
[[2,2,0,0,0],[2,2,0,0],[2,1,0],[2,1],[2]] => 5
[[2,2,0,0,0],[2,2,0,0],[2,2,0],[2,0],[0]] => 5
[[2,2,0,0,0],[2,2,0,0],[2,2,0],[2,0],[1]] => 5
[[2,2,0,0,0],[2,2,0,0],[2,2,0],[2,0],[2]] => 5
[[2,2,0,0,0],[2,2,0,0],[2,2,0],[2,1],[1]] => 5
[[2,2,0,0,0],[2,2,0,0],[2,2,0],[2,1],[2]] => 5
[[2,2,0,0,0],[2,2,0,0],[2,2,0],[2,2],[2]] => 5
[[2,1,1,0,0],[1,1,0,0],[1,0,0],[0,0],[0]] => 5
[[2,1,1,0,0],[1,1,0,0],[1,0,0],[1,0],[0]] => 5
[[2,1,1,0,0],[1,1,0,0],[1,0,0],[1,0],[1]] => 5
[[2,1,1,0,0],[1,1,0,0],[1,1,0],[1,0],[0]] => 5
[[2,1,1,0,0],[1,1,0,0],[1,1,0],[1,0],[1]] => 5
[[2,1,1,0,0],[1,1,0,0],[1,1,0],[1,1],[1]] => 5
[[2,1,1,0,0],[1,1,1,0],[1,1,0],[1,0],[0]] => 15
[[2,1,1,0,0],[1,1,1,0],[1,1,0],[1,0],[1]] => 15
[[2,1,1,0,0],[1,1,1,0],[1,1,0],[1,1],[1]] => 15
[[2,1,1,0,0],[1,1,1,0],[1,1,1],[1,1],[1]] => 15
[[2,1,1,0,0],[2,1,0,0],[1,0,0],[0,0],[0]] => 5
[[2,1,1,0,0],[2,1,0,0],[1,0,0],[1,0],[0]] => 5
[[2,1,1,0,0],[2,1,0,0],[1,0,0],[1,0],[1]] => 5
[[2,1,1,0,0],[2,1,0,0],[1,1,0],[1,0],[0]] => 15
[[2,1,1,0,0],[2,1,0,0],[1,1,0],[1,0],[1]] => 15
[[2,1,1,0,0],[2,1,0,0],[1,1,0],[1,1],[1]] => 15
[[2,1,1,0,0],[2,1,0,0],[2,0,0],[0,0],[0]] => 5
[[2,1,1,0,0],[2,1,0,0],[2,0,0],[1,0],[0]] => 15
[[2,1,1,0,0],[2,1,0,0],[2,0,0],[1,0],[1]] => 15
[[2,1,1,0,0],[2,1,0,0],[2,0,0],[2,0],[0]] => 5
[[2,1,1,0,0],[2,1,0,0],[2,0,0],[2,0],[1]] => 15
[[2,1,1,0,0],[2,1,0,0],[2,0,0],[2,0],[2]] => 5
[[2,1,1,0,0],[2,1,0,0],[2,1,0],[1,0],[0]] => 5
[[2,1,1,0,0],[2,1,0,0],[2,1,0],[1,0],[1]] => 5
[[2,1,1,0,0],[2,1,0,0],[2,1,0],[1,1],[1]] => 15
[[2,1,1,0,0],[2,1,0,0],[2,1,0],[2,0],[0]] => 5
[[2,1,1,0,0],[2,1,0,0],[2,1,0],[2,0],[1]] => 15
[[2,1,1,0,0],[2,1,0,0],[2,1,0],[2,0],[2]] => 5
[[2,1,1,0,0],[2,1,0,0],[2,1,0],[2,1],[1]] => 5
[[2,1,1,0,0],[2,1,0,0],[2,1,0],[2,1],[2]] => 5
[[2,1,1,0,0],[2,1,1,0],[1,1,0],[1,0],[0]] => 5
[[2,1,1,0,0],[2,1,1,0],[1,1,0],[1,0],[1]] => 5
[[2,1,1,0,0],[2,1,1,0],[1,1,0],[1,1],[1]] => 5
[[2,1,1,0,0],[2,1,1,0],[1,1,1],[1,1],[1]] => 15
[[2,1,1,0,0],[2,1,1,0],[2,1,0],[1,0],[0]] => 5
[[2,1,1,0,0],[2,1,1,0],[2,1,0],[1,0],[1]] => 5
[[2,1,1,0,0],[2,1,1,0],[2,1,0],[1,1],[1]] => 15
[[2,1,1,0,0],[2,1,1,0],[2,1,0],[2,0],[0]] => 5
[[2,1,1,0,0],[2,1,1,0],[2,1,0],[2,0],[1]] => 15
[[2,1,1,0,0],[2,1,1,0],[2,1,0],[2,0],[2]] => 5
[[2,1,1,0,0],[2,1,1,0],[2,1,0],[2,1],[1]] => 5
[[2,1,1,0,0],[2,1,1,0],[2,1,0],[2,1],[2]] => 5
[[2,1,1,0,0],[2,1,1,0],[2,1,1],[1,1],[1]] => 5
[[2,1,1,0,0],[2,1,1,0],[2,1,1],[2,1],[1]] => 5
[[1,0,0,0,0,0],[0,0,0,0,0],[0,0,0,0],[0,0,0],[0,0],[0]] => 6
[[1,0,0,0,0,0],[1,0,0,0,0],[0,0,0,0],[0,0,0],[0,0],[0]] => 6
[[1,0,0,0,0,0],[1,0,0,0,0],[1,0,0,0],[0,0,0],[0,0],[0]] => 6
[[1,0,0,0,0,0],[1,0,0,0,0],[1,0,0,0],[1,0,0],[0,0],[0]] => 6
[[1,0,0,0,0,0],[1,0,0,0,0],[1,0,0,0],[1,0,0],[1,0],[0]] => 6
[[1,0,0,0,0,0],[1,0,0,0,0],[1,0,0,0],[1,0,0],[1,0],[1]] => 6
[[2,0,0,0,0,0],[0,0,0,0,0],[0,0,0,0],[0,0,0],[0,0],[0]] => 6
[[2,0,0,0,0,0],[1,0,0,0,0],[0,0,0,0],[0,0,0],[0,0],[0]] => 6
[[2,0,0,0,0,0],[1,0,0,0,0],[1,0,0,0],[0,0,0],[0,0],[0]] => 6
[[2,0,0,0,0,0],[1,0,0,0,0],[1,0,0,0],[1,0,0],[0,0],[0]] => 3
[[2,0,0,0,0,0],[1,0,0,0,0],[1,0,0,0],[1,0,0],[1,0],[0]] => 6
[[2,0,0,0,0,0],[1,0,0,0,0],[1,0,0,0],[1,0,0],[1,0],[1]] => 6
[[2,0,0,0,0,0],[2,0,0,0,0],[0,0,0,0],[0,0,0],[0,0],[0]] => 6
[[2,0,0,0,0,0],[2,0,0,0,0],[1,0,0,0],[0,0,0],[0,0],[0]] => 6
[[2,0,0,0,0,0],[2,0,0,0,0],[1,0,0,0],[1,0,0],[0,0],[0]] => 6
[[2,0,0,0,0,0],[2,0,0,0,0],[1,0,0,0],[1,0,0],[1,0],[0]] => 3
[[2,0,0,0,0,0],[2,0,0,0,0],[1,0,0,0],[1,0,0],[1,0],[1]] => 6
[[2,0,0,0,0,0],[2,0,0,0,0],[2,0,0,0],[0,0,0],[0,0],[0]] => 6
[[2,0,0,0,0,0],[2,0,0,0,0],[2,0,0,0],[1,0,0],[0,0],[0]] => 6
[[2,0,0,0,0,0],[2,0,0,0,0],[2,0,0,0],[1,0,0],[1,0],[0]] => 6
[[2,0,0,0,0,0],[2,0,0,0,0],[2,0,0,0],[1,0,0],[1,0],[1]] => 3
[[2,0,0,0,0,0],[2,0,0,0,0],[2,0,0,0],[2,0,0],[0,0],[0]] => 6
[[2,0,0,0,0,0],[2,0,0,0,0],[2,0,0,0],[2,0,0],[1,0],[0]] => 6
[[2,0,0,0,0,0],[2,0,0,0,0],[2,0,0,0],[2,0,0],[1,0],[1]] => 6
[[2,0,0,0,0,0],[2,0,0,0,0],[2,0,0,0],[2,0,0],[2,0],[0]] => 6
[[2,0,0,0,0,0],[2,0,0,0,0],[2,0,0,0],[2,0,0],[2,0],[1]] => 6
[[2,0,0,0,0,0],[2,0,0,0,0],[2,0,0,0],[2,0,0],[2,0],[2]] => 6
[[1,1,0,0,0,0],[1,0,0,0,0],[0,0,0,0],[0,0,0],[0,0],[0]] => 6
[[1,1,0,0,0,0],[1,0,0,0,0],[1,0,0,0],[0,0,0],[0,0],[0]] => 6
[[1,1,0,0,0,0],[1,0,0,0,0],[1,0,0,0],[1,0,0],[0,0],[0]] => 3
[[1,1,0,0,0,0],[1,0,0,0,0],[1,0,0,0],[1,0,0],[1,0],[0]] => 6
[[1,1,0,0,0,0],[1,0,0,0,0],[1,0,0,0],[1,0,0],[1,0],[1]] => 6
[[1,1,0,0,0,0],[1,1,0,0,0],[1,0,0,0],[0,0,0],[0,0],[0]] => 6
[[1,1,0,0,0,0],[1,1,0,0,0],[1,0,0,0],[1,0,0],[0,0],[0]] => 6
[[1,1,0,0,0,0],[1,1,0,0,0],[1,0,0,0],[1,0,0],[1,0],[0]] => 3
[[1,1,0,0,0,0],[1,1,0,0,0],[1,0,0,0],[1,0,0],[1,0],[1]] => 6
[[1,1,0,0,0,0],[1,1,0,0,0],[1,1,0,0],[1,0,0],[0,0],[0]] => 6
[[1,1,0,0,0,0],[1,1,0,0,0],[1,1,0,0],[1,0,0],[1,0],[0]] => 6
[[1,1,0,0,0,0],[1,1,0,0,0],[1,1,0,0],[1,0,0],[1,0],[1]] => 3
[[1,1,0,0,0,0],[1,1,0,0,0],[1,1,0,0],[1,1,0],[1,0],[0]] => 6
[[1,1,0,0,0,0],[1,1,0,0,0],[1,1,0,0],[1,1,0],[1,0],[1]] => 6
[[1,1,0,0,0,0],[1,1,0,0,0],[1,1,0,0],[1,1,0],[1,1],[1]] => 6
[[1,0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0],[0,0,0,0],[0,0,0],[0,0],[0]] => 7
[[1,0,0,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0],[0,0,0,0],[0,0,0],[0,0],[0]] => 7
[[1,0,0,0,0,0,0],[1,0,0,0,0,0],[1,0,0,0,0],[0,0,0,0],[0,0,0],[0,0],[0]] => 7
[[1,0,0,0,0,0,0],[1,0,0,0,0,0],[1,0,0,0,0],[1,0,0,0],[0,0,0],[0,0],[0]] => 7
[[1,0,0,0,0,0,0],[1,0,0,0,0,0],[1,0,0,0,0],[1,0,0,0],[1,0,0],[0,0],[0]] => 7
[[1,0,0,0,0,0,0],[1,0,0,0,0,0],[1,0,0,0,0],[1,0,0,0],[1,0,0],[1,0],[0]] => 7
[[1,0,0,0,0,0,0],[1,0,0,0,0,0],[1,0,0,0,0],[1,0,0,0],[1,0,0],[1,0],[1]] => 7
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Generating function
$F_{(2, 1)} = 2\ q^{2}$
$F_{(2, 2)} = 2\ q + 2\ q^{2}$
$F_{(3, 1)} = 3\ q^{3}$
$F_{(2, 3)} = 6\ q^{2}$
$F_{(3, 2)} = 9\ q^{3}$
$F_{(4, 1)} = 4\ q^{4}$
$F_{(2, 4)} = 3\ q + 6\ q^{2}$
$F_{(3, 3)} = 2\ q + 2\ q^{2} + 15\ q^{3}$
$F_{(4, 2)} = 4\ q^{2} + 12\ q^{4}$
$F_{(5, 1)} = 5\ q^{5}$
$F_{(2, 5)} = 12\ q^{2}$
$F_{(3, 4)} = 33\ q^{3} + 6\ q^{6}$
$F_{(4, 3)} = 36\ q^{4} + 8\ q^{8}$
$F_{(5, 2)} = 25\ q^{5}$
$F_{(6, 1)} = 6\ q^{6}$
$F_{(2, 6)} = 4\ q + 12\ q^{2}$
$F_{(3, 5)} = 51\ q^{3} + 18\ q^{6}$
$F_{(4, 4)} = 2\ q + 8\ q^{2} + 6\ q^{3} + 76\ q^{4} + 24\ q^{8}$
$F_{(5, 3)} = 65\ q^{5} + 20\ q^{10}$
$F_{(6, 2)} = 6\ q^{3} + 30\ q^{6}$
$F_{(7, 1)} = 7\ q^{7}$
$F_{(2, 7)} = 20\ q^{2}$
$F_{(3, 6)} = 5\ q + 6\ q^{2} + 78\ q^{3} + 30\ q^{6}$
$F_{(4, 5)} = 144\ q^{4} + 80\ q^{8} + 36\ q^{12}$
Description
The order of promotion on a Gelfand-Tsetlin pattern.
Code
def statistic(p):
T = p.to_tableau()
m = len(p)-1
o = 1
S = T.promotion(m)
while S != T:
o += 1
S = S.promotion(m)
return o
Created
Feb 21, 2021 at 16:58 by Martin Rubey
Updated
Feb 21, 2021 at 16:58 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!