Identifier
-
Mp00251:
Graphs
—clique sizes⟶
Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St001695: Standard tableaux ⟶ ℤ
Values
([],1) => [1] => [[1]] => 0
([],2) => [1,1] => [[1],[2]] => 0
([(0,1)],2) => [2] => [[1,2]] => 0
([],3) => [1,1,1] => [[1],[2],[3]] => 0
([(1,2)],3) => [2,1] => [[1,2],[3]] => 0
([(0,2),(1,2)],3) => [2,2] => [[1,2],[3,4]] => 0
([(0,1),(0,2),(1,2)],3) => [3] => [[1,2,3]] => 0
([],4) => [1,1,1,1] => [[1],[2],[3],[4]] => 0
([(2,3)],4) => [2,1,1] => [[1,2],[3],[4]] => 0
([(1,3),(2,3)],4) => [2,2,1] => [[1,2],[3,4],[5]] => 0
([(0,3),(1,3),(2,3)],4) => [2,2,2] => [[1,2],[3,4],[5,6]] => 0
([(0,3),(1,2)],4) => [2,2] => [[1,2],[3,4]] => 0
([(0,3),(1,2),(2,3)],4) => [2,2,2] => [[1,2],[3,4],[5,6]] => 0
([(1,2),(1,3),(2,3)],4) => [3,1] => [[1,2,3],[4]] => 0
([(0,3),(1,2),(1,3),(2,3)],4) => [3,2] => [[1,2,3],[4,5]] => 0
([(0,2),(0,3),(1,2),(1,3)],4) => [2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [3,3] => [[1,2,3],[4,5,6]] => 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [4] => [[1,2,3,4]] => 0
([],5) => [1,1,1,1,1] => [[1],[2],[3],[4],[5]] => 0
([(3,4)],5) => [2,1,1,1] => [[1,2],[3],[4],[5]] => 0
([(2,4),(3,4)],5) => [2,2,1,1] => [[1,2],[3,4],[5],[6]] => 0
([(1,4),(2,4),(3,4)],5) => [2,2,2,1] => [[1,2],[3,4],[5,6],[7]] => 0
([(0,4),(1,4),(2,4),(3,4)],5) => [2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => 0
([(1,4),(2,3)],5) => [2,2,1] => [[1,2],[3,4],[5]] => 0
([(1,4),(2,3),(3,4)],5) => [2,2,2,1] => [[1,2],[3,4],[5,6],[7]] => 0
([(0,1),(2,4),(3,4)],5) => [2,2,2] => [[1,2],[3,4],[5,6]] => 0
([(2,3),(2,4),(3,4)],5) => [3,1,1] => [[1,2,3],[4],[5]] => 0
([(0,4),(1,4),(2,3),(3,4)],5) => [2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => 0
([(1,4),(2,3),(2,4),(3,4)],5) => [3,2,1] => [[1,2,3],[4,5],[6]] => 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [3,2,2] => [[1,2,3],[4,5],[6,7]] => 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,3,1] => [[1,2,3],[4,5,6],[7]] => 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [3,2,2] => [[1,2,3],[4,5],[6,7]] => 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,3,2] => [[1,2,3],[4,5,6],[7,8]] => 0
([(0,4),(1,3),(2,3),(2,4)],5) => [2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => 0
([(0,1),(2,3),(2,4),(3,4)],5) => [3,2] => [[1,2,3],[4,5]] => 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [3,2,2] => [[1,2,3],[4,5],[6,7]] => 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [3,3] => [[1,2,3],[4,5,6]] => 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => [3,3,2] => [[1,2,3],[4,5,6],[7,8]] => 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [[1,2,3,4],[5]] => 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,2] => [[1,2,3,4],[5,6]] => 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,3] => [[1,2,3,4],[5,6,7]] => 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,4] => [[1,2,3,4],[5,6,7,8]] => 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5] => [[1,2,3,4,5]] => 0
([],6) => [1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => 0
([(4,5)],6) => [2,1,1,1,1] => [[1,2],[3],[4],[5],[6]] => 0
([(3,5),(4,5)],6) => [2,2,1,1,1] => [[1,2],[3,4],[5],[6],[7]] => 0
([(2,5),(3,5),(4,5)],6) => [2,2,2,1,1] => [[1,2],[3,4],[5,6],[7],[8]] => 0
([(2,5),(3,4)],6) => [2,2,1,1] => [[1,2],[3,4],[5],[6]] => 0
([(2,5),(3,4),(4,5)],6) => [2,2,2,1,1] => [[1,2],[3,4],[5,6],[7],[8]] => 0
([(1,2),(3,5),(4,5)],6) => [2,2,2,1] => [[1,2],[3,4],[5,6],[7]] => 0
([(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [[1,2,3],[4],[5],[6]] => 0
([(0,1),(2,5),(3,5),(4,5)],6) => [2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => 0
([(2,5),(3,4),(3,5),(4,5)],6) => [3,2,1,1] => [[1,2,3],[4,5],[6],[7]] => 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,2,1] => [[1,2,3],[4,5],[6,7],[8]] => 0
([(0,5),(1,5),(2,4),(3,4)],6) => [2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,1,1] => [[1,2,3],[4,5,6],[7],[8]] => 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,2,2,1] => [[1,2,3],[4,5],[6,7],[8]] => 0
([(0,5),(1,4),(2,3)],6) => [2,2,2] => [[1,2],[3,4],[5,6]] => 0
([(0,1),(2,5),(3,4),(4,5)],6) => [2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => 0
([(1,2),(3,4),(3,5),(4,5)],6) => [3,2,1] => [[1,2,3],[4,5],[6]] => 0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,2,2,1] => [[1,2,3],[4,5],[6,7],[8]] => 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,2] => [[1,2,3],[4,5],[6,7]] => 0
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3,1] => [[1,2,3],[4,5,6],[7]] => 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3,2] => [[1,2,3],[4,5,6],[7,8]] => 0
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,2,2] => [[1,2,3],[4,5],[6,7]] => 0
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,2] => [[1,2,3],[4,5,6],[7,8]] => 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,2] => [[1,2,3],[4,5,6],[7,8]] => 0
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [[1,2,3,4],[5],[6]] => 0
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2,1] => [[1,2,3,4],[5,6],[7]] => 0
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2,2] => [[1,2,3,4],[5,6],[7,8]] => 0
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,3,1] => [[1,2,3,4],[5,6,7],[8]] => 0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2,2] => [[1,2,3,4],[5,6],[7,8]] => 0
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => [[1,2,3],[4,5,6]] => 0
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => [3,3,2] => [[1,2,3],[4,5,6],[7,8]] => 0
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [[1,2,3,4],[5,6]] => 0
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2,2] => [[1,2,3,4],[5,6],[7,8]] => 0
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,3] => [[1,2,3,4],[5,6,7]] => 0
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,4] => [[1,2,3,4],[5,6,7,8]] => 0
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1] => [[1,2,3,4,5],[6]] => 0
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,2] => [[1,2,3,4,5],[6,7]] => 0
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,3] => [[1,2,3,4,5],[6,7,8]] => 0
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6] => [[1,2,3,4,5,6]] => 0
([],7) => [1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7]] => 0
([(5,6)],7) => [2,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7]] => 0
([(4,6),(5,6)],7) => [2,2,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8]] => 0
([(3,6),(4,5)],7) => [2,2,1,1,1] => [[1,2],[3,4],[5],[6],[7]] => 0
([(2,3),(4,6),(5,6)],7) => [2,2,2,1,1] => [[1,2],[3,4],[5,6],[7],[8]] => 0
([(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [[1,2,3],[4],[5],[6],[7]] => 0
([(3,6),(4,5),(4,6),(5,6)],7) => [3,2,1,1,1] => [[1,2,3],[4,5],[6],[7],[8]] => 0
([(1,6),(2,5),(3,4)],7) => [2,2,2,1] => [[1,2],[3,4],[5,6],[7]] => 0
([(0,3),(1,2),(4,6),(5,6)],7) => [2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => 0
([(2,3),(4,5),(4,6),(5,6)],7) => [3,2,1,1] => [[1,2,3],[4,5],[6],[7]] => 0
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [3,2,2,1] => [[1,2,3],[4,5],[6,7],[8]] => 0
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,1,1] => [[1,2,3],[4,5,6],[7],[8]] => 0
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,2,2,1] => [[1,2,3],[4,5],[6,7],[8]] => 0
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => 0
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1,1] => [[1,2,3,4],[5,6],[7],[8]] => 0
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => [3,2,2] => [[1,2,3],[4,5],[6,7]] => 0
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,2] => [[1,2,3],[4,5,6],[7,8]] => 0
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => [3,3,1] => [[1,2,3],[4,5,6],[7]] => 0
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [3,3,2] => [[1,2,3],[4,5,6],[7,8]] => 0
>>> Load all 114 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The natural comajor index of a standard Young tableau.
A natural descent of a standard tableau $T$ is an entry $i$ such that $i+1$ appears in a higher row than $i$ in English notation.
The natural comajor index of a tableau of size $n$ with natural descent set $D$ is then $\sum_{d\in D} n-d$.
A natural descent of a standard tableau $T$ is an entry $i$ such that $i+1$ appears in a higher row than $i$ in English notation.
The natural comajor index of a tableau of size $n$ with natural descent set $D$ is then $\sum_{d\in D} n-d$.
Map
initial tableau
Description
Sends an integer partition to the standard tableau obtained by filling the numbers $1$ through $n$ row by row.
Map
clique sizes
Description
The integer partition of the sizes of the maximal cliques of a graph.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!