Identifier
Values
[[1]] => 0
[[1,2]] => 0
[[1],[2]] => 1
[[1,2,3]] => 0
[[1,3],[2]] => 2
[[1,2],[3]] => 1
[[1],[2],[3]] => 3
[[1,2,3,4]] => 0
[[1,3,4],[2]] => 3
[[1,2,4],[3]] => 2
[[1,2,3],[4]] => 1
[[1,3],[2,4]] => 4
[[1,2],[3,4]] => 2
[[1,4],[2],[3]] => 4
[[1,3],[2],[4]] => 5
[[1,2],[3],[4]] => 3
[[1],[2],[3],[4]] => 6
[[1,2,3,4,5]] => 0
[[1,3,4,5],[2]] => 4
[[1,2,4,5],[3]] => 3
[[1,2,3,5],[4]] => 2
[[1,2,3,4],[5]] => 1
[[1,3,5],[2,4]] => 6
[[1,2,5],[3,4]] => 3
[[1,3,4],[2,5]] => 5
[[1,2,4],[3,5]] => 4
[[1,2,3],[4,5]] => 2
[[1,4,5],[2],[3]] => 5
[[1,3,5],[2],[4]] => 7
[[1,2,5],[3],[4]] => 4
[[1,3,4],[2],[5]] => 6
[[1,2,4],[3],[5]] => 5
[[1,2,3],[4],[5]] => 3
[[1,4],[2,5],[3]] => 6
[[1,3],[2,5],[4]] => 8
[[1,2],[3,5],[4]] => 5
[[1,3],[2,4],[5]] => 7
[[1,2],[3,4],[5]] => 4
[[1,5],[2],[3],[4]] => 7
[[1,4],[2],[3],[5]] => 8
[[1,3],[2],[4],[5]] => 9
[[1,2],[3],[4],[5]] => 6
[[1],[2],[3],[4],[5]] => 10
[[1,2,3,4,5,6]] => 0
[[1,3,4,5,6],[2]] => 5
[[1,2,4,5,6],[3]] => 4
[[1,2,3,5,6],[4]] => 3
[[1,2,3,4,6],[5]] => 2
[[1,2,3,4,5],[6]] => 1
[[1,3,5,6],[2,4]] => 8
[[1,2,5,6],[3,4]] => 4
[[1,3,4,6],[2,5]] => 7
[[1,2,4,6],[3,5]] => 6
[[1,2,3,6],[4,5]] => 3
[[1,3,4,5],[2,6]] => 6
[[1,2,4,5],[3,6]] => 5
[[1,2,3,5],[4,6]] => 4
[[1,2,3,4],[5,6]] => 2
[[1,4,5,6],[2],[3]] => 6
[[1,3,5,6],[2],[4]] => 9
[[1,2,5,6],[3],[4]] => 5
[[1,3,4,6],[2],[5]] => 8
[[1,2,4,6],[3],[5]] => 7
[[1,2,3,6],[4],[5]] => 4
[[1,3,4,5],[2],[6]] => 7
[[1,2,4,5],[3],[6]] => 6
[[1,2,3,5],[4],[6]] => 5
[[1,2,3,4],[5],[6]] => 3
[[1,3,5],[2,4,6]] => 9
[[1,2,5],[3,4,6]] => 5
[[1,3,4],[2,5,6]] => 7
[[1,2,4],[3,5,6]] => 6
[[1,2,3],[4,5,6]] => 3
[[1,4,6],[2,5],[3]] => 8
[[1,3,6],[2,5],[4]] => 11
[[1,2,6],[3,5],[4]] => 7
[[1,3,6],[2,4],[5]] => 9
[[1,2,6],[3,4],[5]] => 5
[[1,4,5],[2,6],[3]] => 7
[[1,3,5],[2,6],[4]] => 10
[[1,2,5],[3,6],[4]] => 6
[[1,3,4],[2,6],[5]] => 9
[[1,2,4],[3,6],[5]] => 8
[[1,2,3],[4,6],[5]] => 5
[[1,3,5],[2,4],[6]] => 10
[[1,2,5],[3,4],[6]] => 6
[[1,3,4],[2,5],[6]] => 8
[[1,2,4],[3,5],[6]] => 7
[[1,2,3],[4,5],[6]] => 4
[[1,5,6],[2],[3],[4]] => 8
[[1,4,6],[2],[3],[5]] => 10
[[1,3,6],[2],[4],[5]] => 11
[[1,2,6],[3],[4],[5]] => 7
[[1,4,5],[2],[3],[6]] => 9
[[1,3,5],[2],[4],[6]] => 12
[[1,2,5],[3],[4],[6]] => 8
[[1,3,4],[2],[5],[6]] => 10
[[1,2,4],[3],[5],[6]] => 9
[[1,2,3],[4],[5],[6]] => 6
[[1,4],[2,5],[3,6]] => 9
[[1,3],[2,5],[4,6]] => 12
>>> Load all 1115 entries. <<<[[1,2],[3,5],[4,6]] => 8
[[1,3],[2,4],[5,6]] => 10
[[1,2],[3,4],[5,6]] => 6
[[1,5],[2,6],[3],[4]] => 9
[[1,4],[2,6],[3],[5]] => 11
[[1,3],[2,6],[4],[5]] => 12
[[1,2],[3,6],[4],[5]] => 8
[[1,4],[2,5],[3],[6]] => 10
[[1,3],[2,5],[4],[6]] => 13
[[1,2],[3,5],[4],[6]] => 9
[[1,3],[2,4],[5],[6]] => 11
[[1,2],[3,4],[5],[6]] => 7
[[1,6],[2],[3],[4],[5]] => 11
[[1,5],[2],[3],[4],[6]] => 12
[[1,4],[2],[3],[5],[6]] => 13
[[1,3],[2],[4],[5],[6]] => 14
[[1,2],[3],[4],[5],[6]] => 10
[[1],[2],[3],[4],[5],[6]] => 15
[[1,2,3,4,5,6,7]] => 0
[[1,3,4,5,6,7],[2]] => 6
[[1,2,4,5,6,7],[3]] => 5
[[1,2,3,5,6,7],[4]] => 4
[[1,2,3,4,6,7],[5]] => 3
[[1,2,3,4,5,7],[6]] => 2
[[1,2,3,4,5,6],[7]] => 1
[[1,3,5,6,7],[2,4]] => 10
[[1,2,5,6,7],[3,4]] => 5
[[1,3,4,6,7],[2,5]] => 9
[[1,2,4,6,7],[3,5]] => 8
[[1,2,3,6,7],[4,5]] => 4
[[1,3,4,5,7],[2,6]] => 8
[[1,2,4,5,7],[3,6]] => 7
[[1,2,3,5,7],[4,6]] => 6
[[1,2,3,4,7],[5,6]] => 3
[[1,3,4,5,6],[2,7]] => 7
[[1,2,4,5,6],[3,7]] => 6
[[1,2,3,5,6],[4,7]] => 5
[[1,2,3,4,6],[5,7]] => 4
[[1,2,3,4,5],[6,7]] => 2
[[1,4,5,6,7],[2],[3]] => 7
[[1,3,5,6,7],[2],[4]] => 11
[[1,2,5,6,7],[3],[4]] => 6
[[1,3,4,6,7],[2],[5]] => 10
[[1,2,4,6,7],[3],[5]] => 9
[[1,2,3,6,7],[4],[5]] => 5
[[1,3,4,5,7],[2],[6]] => 9
[[1,2,4,5,7],[3],[6]] => 8
[[1,2,3,5,7],[4],[6]] => 7
[[1,2,3,4,7],[5],[6]] => 4
[[1,3,4,5,6],[2],[7]] => 8
[[1,2,4,5,6],[3],[7]] => 7
[[1,2,3,5,6],[4],[7]] => 6
[[1,2,3,4,6],[5],[7]] => 5
[[1,2,3,4,5],[6],[7]] => 3
[[1,3,5,7],[2,4,6]] => 12
[[1,2,5,7],[3,4,6]] => 7
[[1,3,4,7],[2,5,6]] => 9
[[1,2,4,7],[3,5,6]] => 8
[[1,2,3,7],[4,5,6]] => 4
[[1,3,5,6],[2,4,7]] => 11
[[1,2,5,6],[3,4,7]] => 6
[[1,3,4,6],[2,5,7]] => 10
[[1,2,4,6],[3,5,7]] => 9
[[1,2,3,6],[4,5,7]] => 5
[[1,3,4,5],[2,6,7]] => 8
[[1,2,4,5],[3,6,7]] => 7
[[1,2,3,5],[4,6,7]] => 6
[[1,2,3,4],[5,6,7]] => 3
[[1,4,6,7],[2,5],[3]] => 10
[[1,3,6,7],[2,5],[4]] => 14
[[1,2,6,7],[3,5],[4]] => 9
[[1,3,6,7],[2,4],[5]] => 11
[[1,2,6,7],[3,4],[5]] => 6
[[1,4,5,7],[2,6],[3]] => 9
[[1,3,5,7],[2,6],[4]] => 13
[[1,2,5,7],[3,6],[4]] => 8
[[1,3,4,7],[2,6],[5]] => 12
[[1,2,4,7],[3,6],[5]] => 11
[[1,2,3,7],[4,6],[5]] => 7
[[1,3,5,7],[2,4],[6]] => 13
[[1,2,5,7],[3,4],[6]] => 8
[[1,3,4,7],[2,5],[6]] => 10
[[1,2,4,7],[3,5],[6]] => 9
[[1,2,3,7],[4,5],[6]] => 5
[[1,4,5,6],[2,7],[3]] => 8
[[1,3,5,6],[2,7],[4]] => 12
[[1,2,5,6],[3,7],[4]] => 7
[[1,3,4,6],[2,7],[5]] => 11
[[1,2,4,6],[3,7],[5]] => 10
[[1,2,3,6],[4,7],[5]] => 6
[[1,3,4,5],[2,7],[6]] => 10
[[1,2,4,5],[3,7],[6]] => 9
[[1,2,3,5],[4,7],[6]] => 8
[[1,2,3,4],[5,7],[6]] => 5
[[1,3,5,6],[2,4],[7]] => 12
[[1,2,5,6],[3,4],[7]] => 7
[[1,3,4,6],[2,5],[7]] => 11
[[1,2,4,6],[3,5],[7]] => 10
[[1,2,3,6],[4,5],[7]] => 6
[[1,3,4,5],[2,6],[7]] => 9
[[1,2,4,5],[3,6],[7]] => 8
[[1,2,3,5],[4,6],[7]] => 7
[[1,2,3,4],[5,6],[7]] => 4
[[1,5,6,7],[2],[3],[4]] => 9
[[1,4,6,7],[2],[3],[5]] => 12
[[1,3,6,7],[2],[4],[5]] => 13
[[1,2,6,7],[3],[4],[5]] => 8
[[1,4,5,7],[2],[3],[6]] => 11
[[1,3,5,7],[2],[4],[6]] => 15
[[1,2,5,7],[3],[4],[6]] => 10
[[1,3,4,7],[2],[5],[6]] => 12
[[1,2,4,7],[3],[5],[6]] => 11
[[1,2,3,7],[4],[5],[6]] => 7
[[1,4,5,6],[2],[3],[7]] => 10
[[1,3,5,6],[2],[4],[7]] => 14
[[1,2,5,6],[3],[4],[7]] => 9
[[1,3,4,6],[2],[5],[7]] => 13
[[1,2,4,6],[3],[5],[7]] => 12
[[1,2,3,6],[4],[5],[7]] => 8
[[1,3,4,5],[2],[6],[7]] => 11
[[1,2,4,5],[3],[6],[7]] => 10
[[1,2,3,5],[4],[6],[7]] => 9
[[1,2,3,4],[5],[6],[7]] => 6
[[1,4,6],[2,5,7],[3]] => 11
[[1,3,6],[2,5,7],[4]] => 15
[[1,2,6],[3,5,7],[4]] => 10
[[1,3,6],[2,4,7],[5]] => 12
[[1,2,6],[3,4,7],[5]] => 7
[[1,4,5],[2,6,7],[3]] => 9
[[1,3,5],[2,6,7],[4]] => 13
[[1,2,5],[3,6,7],[4]] => 8
[[1,3,4],[2,6,7],[5]] => 12
[[1,2,4],[3,6,7],[5]] => 11
[[1,2,3],[4,6,7],[5]] => 7
[[1,3,5],[2,4,7],[6]] => 14
[[1,2,5],[3,4,7],[6]] => 9
[[1,3,4],[2,5,7],[6]] => 11
[[1,2,4],[3,5,7],[6]] => 10
[[1,2,3],[4,5,7],[6]] => 6
[[1,3,5],[2,4,6],[7]] => 13
[[1,2,5],[3,4,6],[7]] => 8
[[1,3,4],[2,5,6],[7]] => 10
[[1,2,4],[3,5,6],[7]] => 9
[[1,2,3],[4,5,6],[7]] => 5
[[1,4,7],[2,5],[3,6]] => 11
[[1,3,7],[2,5],[4,6]] => 15
[[1,2,7],[3,5],[4,6]] => 10
[[1,3,7],[2,4],[5,6]] => 12
[[1,2,7],[3,4],[5,6]] => 7
[[1,4,6],[2,5],[3,7]] => 12
[[1,3,6],[2,5],[4,7]] => 16
[[1,2,6],[3,5],[4,7]] => 11
[[1,3,6],[2,4],[5,7]] => 13
[[1,2,6],[3,4],[5,7]] => 8
[[1,4,5],[2,6],[3,7]] => 10
[[1,3,5],[2,6],[4,7]] => 14
[[1,2,5],[3,6],[4,7]] => 9
[[1,3,4],[2,6],[5,7]] => 13
[[1,2,4],[3,6],[5,7]] => 12
[[1,2,3],[4,6],[5,7]] => 8
[[1,3,5],[2,4],[6,7]] => 14
[[1,2,5],[3,4],[6,7]] => 9
[[1,3,4],[2,5],[6,7]] => 11
[[1,2,4],[3,5],[6,7]] => 10
[[1,2,3],[4,5],[6,7]] => 6
[[1,5,7],[2,6],[3],[4]] => 11
[[1,4,7],[2,6],[3],[5]] => 14
[[1,3,7],[2,6],[4],[5]] => 15
[[1,2,7],[3,6],[4],[5]] => 10
[[1,4,7],[2,5],[3],[6]] => 12
[[1,3,7],[2,5],[4],[6]] => 16
[[1,2,7],[3,5],[4],[6]] => 11
[[1,3,7],[2,4],[5],[6]] => 13
[[1,2,7],[3,4],[5],[6]] => 8
[[1,5,6],[2,7],[3],[4]] => 10
[[1,4,6],[2,7],[3],[5]] => 13
[[1,3,6],[2,7],[4],[5]] => 14
[[1,2,6],[3,7],[4],[5]] => 9
[[1,4,5],[2,7],[3],[6]] => 12
[[1,3,5],[2,7],[4],[6]] => 16
[[1,2,5],[3,7],[4],[6]] => 11
[[1,3,4],[2,7],[5],[6]] => 13
[[1,2,4],[3,7],[5],[6]] => 12
[[1,2,3],[4,7],[5],[6]] => 8
[[1,4,6],[2,5],[3],[7]] => 13
[[1,3,6],[2,5],[4],[7]] => 17
[[1,2,6],[3,5],[4],[7]] => 12
[[1,3,6],[2,4],[5],[7]] => 14
[[1,2,6],[3,4],[5],[7]] => 9
[[1,4,5],[2,6],[3],[7]] => 11
[[1,3,5],[2,6],[4],[7]] => 15
[[1,2,5],[3,6],[4],[7]] => 10
[[1,3,4],[2,6],[5],[7]] => 14
[[1,2,4],[3,6],[5],[7]] => 13
[[1,2,3],[4,6],[5],[7]] => 9
[[1,3,5],[2,4],[6],[7]] => 15
[[1,2,5],[3,4],[6],[7]] => 10
[[1,3,4],[2,5],[6],[7]] => 12
[[1,2,4],[3,5],[6],[7]] => 11
[[1,2,3],[4,5],[6],[7]] => 7
[[1,6,7],[2],[3],[4],[5]] => 12
[[1,5,7],[2],[3],[4],[6]] => 14
[[1,4,7],[2],[3],[5],[6]] => 15
[[1,3,7],[2],[4],[5],[6]] => 16
[[1,2,7],[3],[4],[5],[6]] => 11
[[1,5,6],[2],[3],[4],[7]] => 13
[[1,4,6],[2],[3],[5],[7]] => 16
[[1,3,6],[2],[4],[5],[7]] => 17
[[1,2,6],[3],[4],[5],[7]] => 12
[[1,4,5],[2],[3],[6],[7]] => 14
[[1,3,5],[2],[4],[6],[7]] => 18
[[1,2,5],[3],[4],[6],[7]] => 13
[[1,3,4],[2],[5],[6],[7]] => 15
[[1,2,4],[3],[5],[6],[7]] => 14
[[1,2,3],[4],[5],[6],[7]] => 10
[[1,5],[2,6],[3,7],[4]] => 12
[[1,4],[2,6],[3,7],[5]] => 15
[[1,3],[2,6],[4,7],[5]] => 16
[[1,2],[3,6],[4,7],[5]] => 11
[[1,4],[2,5],[3,7],[6]] => 14
[[1,3],[2,5],[4,7],[6]] => 18
[[1,2],[3,5],[4,7],[6]] => 13
[[1,3],[2,4],[5,7],[6]] => 15
[[1,2],[3,4],[5,7],[6]] => 10
[[1,4],[2,5],[3,6],[7]] => 13
[[1,3],[2,5],[4,6],[7]] => 17
[[1,2],[3,5],[4,6],[7]] => 12
[[1,3],[2,4],[5,6],[7]] => 14
[[1,2],[3,4],[5,6],[7]] => 9
[[1,6],[2,7],[3],[4],[5]] => 13
[[1,5],[2,7],[3],[4],[6]] => 15
[[1,4],[2,7],[3],[5],[6]] => 16
[[1,3],[2,7],[4],[5],[6]] => 17
[[1,2],[3,7],[4],[5],[6]] => 12
[[1,5],[2,6],[3],[4],[7]] => 14
[[1,4],[2,6],[3],[5],[7]] => 17
[[1,3],[2,6],[4],[5],[7]] => 18
[[1,2],[3,6],[4],[5],[7]] => 13
[[1,4],[2,5],[3],[6],[7]] => 15
[[1,3],[2,5],[4],[6],[7]] => 19
[[1,2],[3,5],[4],[6],[7]] => 14
[[1,3],[2,4],[5],[6],[7]] => 16
[[1,2],[3,4],[5],[6],[7]] => 11
[[1,7],[2],[3],[4],[5],[6]] => 16
[[1,6],[2],[3],[4],[5],[7]] => 17
[[1,5],[2],[3],[4],[6],[7]] => 18
[[1,4],[2],[3],[5],[6],[7]] => 19
[[1,3],[2],[4],[5],[6],[7]] => 20
[[1,2],[3],[4],[5],[6],[7]] => 15
[[1],[2],[3],[4],[5],[6],[7]] => 21
[[1,2,3,4,5,6,7,8]] => 0
[[1,3,4,5,6,7,8],[2]] => 7
[[1,2,4,5,6,7,8],[3]] => 6
[[1,2,3,5,6,7,8],[4]] => 5
[[1,2,3,4,6,7,8],[5]] => 4
[[1,2,3,4,5,7,8],[6]] => 3
[[1,2,3,4,5,6,8],[7]] => 2
[[1,2,3,4,5,6,7],[8]] => 1
[[1,3,5,6,7,8],[2,4]] => 12
[[1,2,5,6,7,8],[3,4]] => 6
[[1,3,4,6,7,8],[2,5]] => 11
[[1,2,4,6,7,8],[3,5]] => 10
[[1,2,3,6,7,8],[4,5]] => 5
[[1,3,4,5,7,8],[2,6]] => 10
[[1,2,4,5,7,8],[3,6]] => 9
[[1,2,3,5,7,8],[4,6]] => 8
[[1,2,3,4,7,8],[5,6]] => 4
[[1,3,4,5,6,8],[2,7]] => 9
[[1,2,4,5,6,8],[3,7]] => 8
[[1,2,3,5,6,8],[4,7]] => 7
[[1,2,3,4,6,8],[5,7]] => 6
[[1,2,3,4,5,8],[6,7]] => 3
[[1,3,4,5,6,7],[2,8]] => 8
[[1,2,4,5,6,7],[3,8]] => 7
[[1,2,3,5,6,7],[4,8]] => 6
[[1,2,3,4,6,7],[5,8]] => 5
[[1,2,3,4,5,7],[6,8]] => 4
[[1,2,3,4,5,6],[7,8]] => 2
[[1,4,5,6,7,8],[2],[3]] => 8
[[1,3,5,6,7,8],[2],[4]] => 13
[[1,2,5,6,7,8],[3],[4]] => 7
[[1,3,4,6,7,8],[2],[5]] => 12
[[1,2,4,6,7,8],[3],[5]] => 11
[[1,2,3,6,7,8],[4],[5]] => 6
[[1,3,4,5,7,8],[2],[6]] => 11
[[1,2,4,5,7,8],[3],[6]] => 10
[[1,2,3,5,7,8],[4],[6]] => 9
[[1,2,3,4,7,8],[5],[6]] => 5
[[1,3,4,5,6,8],[2],[7]] => 10
[[1,2,4,5,6,8],[3],[7]] => 9
[[1,2,3,5,6,8],[4],[7]] => 8
[[1,2,3,4,6,8],[5],[7]] => 7
[[1,2,3,4,5,8],[6],[7]] => 4
[[1,3,4,5,6,7],[2],[8]] => 9
[[1,2,4,5,6,7],[3],[8]] => 8
[[1,2,3,5,6,7],[4],[8]] => 7
[[1,2,3,4,6,7],[5],[8]] => 6
[[1,2,3,4,5,7],[6],[8]] => 5
[[1,2,3,4,5,6],[7],[8]] => 3
[[1,3,5,7,8],[2,4,6]] => 15
[[1,2,5,7,8],[3,4,6]] => 9
[[1,3,4,7,8],[2,5,6]] => 11
[[1,2,4,7,8],[3,5,6]] => 10
[[1,2,3,7,8],[4,5,6]] => 5
[[1,3,5,6,8],[2,4,7]] => 14
[[1,2,5,6,8],[3,4,7]] => 8
[[1,3,4,6,8],[2,5,7]] => 13
[[1,2,4,6,8],[3,5,7]] => 12
[[1,2,3,6,8],[4,5,7]] => 7
[[1,3,4,5,8],[2,6,7]] => 10
[[1,2,4,5,8],[3,6,7]] => 9
[[1,2,3,5,8],[4,6,7]] => 8
[[1,2,3,4,8],[5,6,7]] => 4
[[1,3,5,6,7],[2,4,8]] => 13
[[1,2,5,6,7],[3,4,8]] => 7
[[1,3,4,6,7],[2,5,8]] => 12
[[1,2,4,6,7],[3,5,8]] => 11
[[1,2,3,6,7],[4,5,8]] => 6
[[1,3,4,5,7],[2,6,8]] => 11
[[1,2,4,5,7],[3,6,8]] => 10
[[1,2,3,5,7],[4,6,8]] => 9
[[1,2,3,4,7],[5,6,8]] => 5
[[1,3,4,5,6],[2,7,8]] => 9
[[1,2,4,5,6],[3,7,8]] => 8
[[1,2,3,5,6],[4,7,8]] => 7
[[1,2,3,4,6],[5,7,8]] => 6
[[1,2,3,4,5],[6,7,8]] => 3
[[1,4,6,7,8],[2,5],[3]] => 12
[[1,3,6,7,8],[2,5],[4]] => 17
[[1,2,6,7,8],[3,5],[4]] => 11
[[1,3,6,7,8],[2,4],[5]] => 13
[[1,2,6,7,8],[3,4],[5]] => 7
[[1,4,5,7,8],[2,6],[3]] => 11
[[1,3,5,7,8],[2,6],[4]] => 16
[[1,2,5,7,8],[3,6],[4]] => 10
[[1,3,4,7,8],[2,6],[5]] => 15
[[1,2,4,7,8],[3,6],[5]] => 14
[[1,2,3,7,8],[4,6],[5]] => 9
[[1,3,5,7,8],[2,4],[6]] => 16
[[1,2,5,7,8],[3,4],[6]] => 10
[[1,3,4,7,8],[2,5],[6]] => 12
[[1,2,4,7,8],[3,5],[6]] => 11
[[1,2,3,7,8],[4,5],[6]] => 6
[[1,4,5,6,8],[2,7],[3]] => 10
[[1,3,5,6,8],[2,7],[4]] => 15
[[1,2,5,6,8],[3,7],[4]] => 9
[[1,3,4,6,8],[2,7],[5]] => 14
[[1,2,4,6,8],[3,7],[5]] => 13
[[1,2,3,6,8],[4,7],[5]] => 8
[[1,3,4,5,8],[2,7],[6]] => 13
[[1,2,4,5,8],[3,7],[6]] => 12
[[1,2,3,5,8],[4,7],[6]] => 11
[[1,2,3,4,8],[5,7],[6]] => 7
[[1,3,5,6,8],[2,4],[7]] => 15
[[1,2,5,6,8],[3,4],[7]] => 9
[[1,3,4,6,8],[2,5],[7]] => 14
[[1,2,4,6,8],[3,5],[7]] => 13
[[1,2,3,6,8],[4,5],[7]] => 8
[[1,3,4,5,8],[2,6],[7]] => 11
[[1,2,4,5,8],[3,6],[7]] => 10
[[1,2,3,5,8],[4,6],[7]] => 9
[[1,2,3,4,8],[5,6],[7]] => 5
[[1,4,5,6,7],[2,8],[3]] => 9
[[1,3,5,6,7],[2,8],[4]] => 14
[[1,2,5,6,7],[3,8],[4]] => 8
[[1,3,4,6,7],[2,8],[5]] => 13
[[1,2,4,6,7],[3,8],[5]] => 12
[[1,2,3,6,7],[4,8],[5]] => 7
[[1,3,4,5,7],[2,8],[6]] => 12
[[1,2,4,5,7],[3,8],[6]] => 11
[[1,2,3,5,7],[4,8],[6]] => 10
[[1,2,3,4,7],[5,8],[6]] => 6
[[1,3,4,5,6],[2,8],[7]] => 11
[[1,2,4,5,6],[3,8],[7]] => 10
[[1,2,3,5,6],[4,8],[7]] => 9
[[1,2,3,4,6],[5,8],[7]] => 8
[[1,2,3,4,5],[6,8],[7]] => 5
[[1,3,5,6,7],[2,4],[8]] => 14
[[1,2,5,6,7],[3,4],[8]] => 8
[[1,3,4,6,7],[2,5],[8]] => 13
[[1,2,4,6,7],[3,5],[8]] => 12
[[1,2,3,6,7],[4,5],[8]] => 7
[[1,3,4,5,7],[2,6],[8]] => 12
[[1,2,4,5,7],[3,6],[8]] => 11
[[1,2,3,5,7],[4,6],[8]] => 10
[[1,2,3,4,7],[5,6],[8]] => 6
[[1,3,4,5,6],[2,7],[8]] => 10
[[1,2,4,5,6],[3,7],[8]] => 9
[[1,2,3,5,6],[4,7],[8]] => 8
[[1,2,3,4,6],[5,7],[8]] => 7
[[1,2,3,4,5],[6,7],[8]] => 4
[[1,5,6,7,8],[2],[3],[4]] => 10
[[1,4,6,7,8],[2],[3],[5]] => 14
[[1,3,6,7,8],[2],[4],[5]] => 15
[[1,2,6,7,8],[3],[4],[5]] => 9
[[1,4,5,7,8],[2],[3],[6]] => 13
[[1,3,5,7,8],[2],[4],[6]] => 18
[[1,2,5,7,8],[3],[4],[6]] => 12
[[1,3,4,7,8],[2],[5],[6]] => 14
[[1,2,4,7,8],[3],[5],[6]] => 13
[[1,2,3,7,8],[4],[5],[6]] => 8
[[1,4,5,6,8],[2],[3],[7]] => 12
[[1,3,5,6,8],[2],[4],[7]] => 17
[[1,2,5,6,8],[3],[4],[7]] => 11
[[1,3,4,6,8],[2],[5],[7]] => 16
[[1,2,4,6,8],[3],[5],[7]] => 15
[[1,2,3,6,8],[4],[5],[7]] => 10
[[1,3,4,5,8],[2],[6],[7]] => 13
[[1,2,4,5,8],[3],[6],[7]] => 12
[[1,2,3,5,8],[4],[6],[7]] => 11
[[1,2,3,4,8],[5],[6],[7]] => 7
[[1,4,5,6,7],[2],[3],[8]] => 11
[[1,3,5,6,7],[2],[4],[8]] => 16
[[1,2,5,6,7],[3],[4],[8]] => 10
[[1,3,4,6,7],[2],[5],[8]] => 15
[[1,2,4,6,7],[3],[5],[8]] => 14
[[1,2,3,6,7],[4],[5],[8]] => 9
[[1,3,4,5,7],[2],[6],[8]] => 14
[[1,2,4,5,7],[3],[6],[8]] => 13
[[1,2,3,5,7],[4],[6],[8]] => 12
[[1,2,3,4,7],[5],[6],[8]] => 8
[[1,3,4,5,6],[2],[7],[8]] => 12
[[1,2,4,5,6],[3],[7],[8]] => 11
[[1,2,3,5,6],[4],[7],[8]] => 10
[[1,2,3,4,6],[5],[7],[8]] => 9
[[1,2,3,4,5],[6],[7],[8]] => 6
[[1,3,5,7],[2,4,6,8]] => 16
[[1,2,5,7],[3,4,6,8]] => 10
[[1,3,4,7],[2,5,6,8]] => 12
[[1,2,4,7],[3,5,6,8]] => 11
[[1,2,3,7],[4,5,6,8]] => 6
[[1,3,5,6],[2,4,7,8]] => 14
[[1,2,5,6],[3,4,7,8]] => 8
[[1,3,4,6],[2,5,7,8]] => 13
[[1,2,4,6],[3,5,7,8]] => 12
[[1,2,3,6],[4,5,7,8]] => 7
[[1,3,4,5],[2,6,7,8]] => 10
[[1,2,4,5],[3,6,7,8]] => 9
[[1,2,3,5],[4,6,7,8]] => 8
[[1,2,3,4],[5,6,7,8]] => 4
[[1,4,6,8],[2,5,7],[3]] => 14
[[1,3,6,8],[2,5,7],[4]] => 19
[[1,2,6,8],[3,5,7],[4]] => 13
[[1,3,6,8],[2,4,7],[5]] => 15
[[1,2,6,8],[3,4,7],[5]] => 9
[[1,4,5,8],[2,6,7],[3]] => 11
[[1,3,5,8],[2,6,7],[4]] => 16
[[1,2,5,8],[3,6,7],[4]] => 10
[[1,3,4,8],[2,6,7],[5]] => 15
[[1,2,4,8],[3,6,7],[5]] => 14
[[1,2,3,8],[4,6,7],[5]] => 9
[[1,3,5,8],[2,4,7],[6]] => 18
[[1,2,5,8],[3,4,7],[6]] => 12
[[1,3,4,8],[2,5,7],[6]] => 14
[[1,2,4,8],[3,5,7],[6]] => 13
[[1,2,3,8],[4,5,7],[6]] => 8
[[1,3,5,8],[2,4,6],[7]] => 16
[[1,2,5,8],[3,4,6],[7]] => 10
[[1,3,4,8],[2,5,6],[7]] => 12
[[1,2,4,8],[3,5,6],[7]] => 11
[[1,2,3,8],[4,5,6],[7]] => 6
[[1,4,6,7],[2,5,8],[3]] => 13
[[1,3,6,7],[2,5,8],[4]] => 18
[[1,2,6,7],[3,5,8],[4]] => 12
[[1,3,6,7],[2,4,8],[5]] => 14
[[1,2,6,7],[3,4,8],[5]] => 8
[[1,4,5,7],[2,6,8],[3]] => 12
[[1,3,5,7],[2,6,8],[4]] => 17
[[1,2,5,7],[3,6,8],[4]] => 11
[[1,3,4,7],[2,6,8],[5]] => 16
[[1,2,4,7],[3,6,8],[5]] => 15
[[1,2,3,7],[4,6,8],[5]] => 10
[[1,3,5,7],[2,4,8],[6]] => 17
[[1,2,5,7],[3,4,8],[6]] => 11
[[1,3,4,7],[2,5,8],[6]] => 13
[[1,2,4,7],[3,5,8],[6]] => 12
[[1,2,3,7],[4,5,8],[6]] => 7
[[1,4,5,6],[2,7,8],[3]] => 10
[[1,3,5,6],[2,7,8],[4]] => 15
[[1,2,5,6],[3,7,8],[4]] => 9
[[1,3,4,6],[2,7,8],[5]] => 14
[[1,2,4,6],[3,7,8],[5]] => 13
[[1,2,3,6],[4,7,8],[5]] => 8
[[1,3,4,5],[2,7,8],[6]] => 13
[[1,2,4,5],[3,7,8],[6]] => 12
[[1,2,3,5],[4,7,8],[6]] => 11
[[1,2,3,4],[5,7,8],[6]] => 7
[[1,3,5,6],[2,4,8],[7]] => 16
[[1,2,5,6],[3,4,8],[7]] => 10
[[1,3,4,6],[2,5,8],[7]] => 15
[[1,2,4,6],[3,5,8],[7]] => 14
[[1,2,3,6],[4,5,8],[7]] => 9
[[1,3,4,5],[2,6,8],[7]] => 12
[[1,2,4,5],[3,6,8],[7]] => 11
[[1,2,3,5],[4,6,8],[7]] => 10
[[1,2,3,4],[5,6,8],[7]] => 6
[[1,3,5,7],[2,4,6],[8]] => 17
[[1,2,5,7],[3,4,6],[8]] => 11
[[1,3,4,7],[2,5,6],[8]] => 13
[[1,2,4,7],[3,5,6],[8]] => 12
[[1,2,3,7],[4,5,6],[8]] => 7
[[1,3,5,6],[2,4,7],[8]] => 15
[[1,2,5,6],[3,4,7],[8]] => 9
[[1,3,4,6],[2,5,7],[8]] => 14
[[1,2,4,6],[3,5,7],[8]] => 13
[[1,2,3,6],[4,5,7],[8]] => 8
[[1,3,4,5],[2,6,7],[8]] => 11
[[1,2,4,5],[3,6,7],[8]] => 10
[[1,2,3,5],[4,6,7],[8]] => 9
[[1,2,3,4],[5,6,7],[8]] => 5
[[1,4,7,8],[2,5],[3,6]] => 13
[[1,3,7,8],[2,5],[4,6]] => 18
[[1,2,7,8],[3,5],[4,6]] => 12
[[1,3,7,8],[2,4],[5,6]] => 14
[[1,2,7,8],[3,4],[5,6]] => 8
[[1,4,6,8],[2,5],[3,7]] => 15
[[1,3,6,8],[2,5],[4,7]] => 20
[[1,2,6,8],[3,5],[4,7]] => 14
[[1,3,6,8],[2,4],[5,7]] => 16
[[1,2,6,8],[3,4],[5,7]] => 10
[[1,4,5,8],[2,6],[3,7]] => 12
[[1,3,5,8],[2,6],[4,7]] => 17
[[1,2,5,8],[3,6],[4,7]] => 11
[[1,3,4,8],[2,6],[5,7]] => 16
[[1,2,4,8],[3,6],[5,7]] => 15
[[1,2,3,8],[4,6],[5,7]] => 10
[[1,3,5,8],[2,4],[6,7]] => 17
[[1,2,5,8],[3,4],[6,7]] => 11
[[1,3,4,8],[2,5],[6,7]] => 13
[[1,2,4,8],[3,5],[6,7]] => 12
[[1,2,3,8],[4,5],[6,7]] => 7
[[1,4,6,7],[2,5],[3,8]] => 14
[[1,3,6,7],[2,5],[4,8]] => 19
[[1,2,6,7],[3,5],[4,8]] => 13
[[1,3,6,7],[2,4],[5,8]] => 15
[[1,2,6,7],[3,4],[5,8]] => 9
[[1,4,5,7],[2,6],[3,8]] => 13
[[1,3,5,7],[2,6],[4,8]] => 18
[[1,2,5,7],[3,6],[4,8]] => 12
[[1,3,4,7],[2,6],[5,8]] => 17
[[1,2,4,7],[3,6],[5,8]] => 16
[[1,2,3,7],[4,6],[5,8]] => 11
[[1,3,5,7],[2,4],[6,8]] => 18
[[1,2,5,7],[3,4],[6,8]] => 12
[[1,3,4,7],[2,5],[6,8]] => 14
[[1,2,4,7],[3,5],[6,8]] => 13
[[1,2,3,7],[4,5],[6,8]] => 8
[[1,4,5,6],[2,7],[3,8]] => 11
[[1,3,5,6],[2,7],[4,8]] => 16
[[1,2,5,6],[3,7],[4,8]] => 10
[[1,3,4,6],[2,7],[5,8]] => 15
[[1,2,4,6],[3,7],[5,8]] => 14
[[1,2,3,6],[4,7],[5,8]] => 9
[[1,3,4,5],[2,7],[6,8]] => 14
[[1,2,4,5],[3,7],[6,8]] => 13
[[1,2,3,5],[4,7],[6,8]] => 12
[[1,2,3,4],[5,7],[6,8]] => 8
[[1,3,5,6],[2,4],[7,8]] => 16
[[1,2,5,6],[3,4],[7,8]] => 10
[[1,3,4,6],[2,5],[7,8]] => 15
[[1,2,4,6],[3,5],[7,8]] => 14
[[1,2,3,6],[4,5],[7,8]] => 9
[[1,3,4,5],[2,6],[7,8]] => 12
[[1,2,4,5],[3,6],[7,8]] => 11
[[1,2,3,5],[4,6],[7,8]] => 10
[[1,2,3,4],[5,6],[7,8]] => 6
[[1,5,7,8],[2,6],[3],[4]] => 13
[[1,4,7,8],[2,6],[3],[5]] => 17
[[1,3,7,8],[2,6],[4],[5]] => 18
[[1,2,7,8],[3,6],[4],[5]] => 12
[[1,4,7,8],[2,5],[3],[6]] => 14
[[1,3,7,8],[2,5],[4],[6]] => 19
[[1,2,7,8],[3,5],[4],[6]] => 13
[[1,3,7,8],[2,4],[5],[6]] => 15
[[1,2,7,8],[3,4],[5],[6]] => 9
[[1,5,6,8],[2,7],[3],[4]] => 12
[[1,4,6,8],[2,7],[3],[5]] => 16
[[1,3,6,8],[2,7],[4],[5]] => 17
[[1,2,6,8],[3,7],[4],[5]] => 11
[[1,4,5,8],[2,7],[3],[6]] => 15
[[1,3,5,8],[2,7],[4],[6]] => 20
[[1,2,5,8],[3,7],[4],[6]] => 14
[[1,3,4,8],[2,7],[5],[6]] => 16
[[1,2,4,8],[3,7],[5],[6]] => 15
[[1,2,3,8],[4,7],[5],[6]] => 10
[[1,4,6,8],[2,5],[3],[7]] => 16
[[1,3,6,8],[2,5],[4],[7]] => 21
[[1,2,6,8],[3,5],[4],[7]] => 15
[[1,3,6,8],[2,4],[5],[7]] => 17
[[1,2,6,8],[3,4],[5],[7]] => 11
[[1,4,5,8],[2,6],[3],[7]] => 13
[[1,3,5,8],[2,6],[4],[7]] => 18
[[1,2,5,8],[3,6],[4],[7]] => 12
[[1,3,4,8],[2,6],[5],[7]] => 17
[[1,2,4,8],[3,6],[5],[7]] => 16
[[1,2,3,8],[4,6],[5],[7]] => 11
[[1,3,5,8],[2,4],[6],[7]] => 18
[[1,2,5,8],[3,4],[6],[7]] => 12
[[1,3,4,8],[2,5],[6],[7]] => 14
[[1,2,4,8],[3,5],[6],[7]] => 13
[[1,2,3,8],[4,5],[6],[7]] => 8
[[1,5,6,7],[2,8],[3],[4]] => 11
[[1,4,6,7],[2,8],[3],[5]] => 15
[[1,3,6,7],[2,8],[4],[5]] => 16
[[1,2,6,7],[3,8],[4],[5]] => 10
[[1,4,5,7],[2,8],[3],[6]] => 14
[[1,3,5,7],[2,8],[4],[6]] => 19
[[1,2,5,7],[3,8],[4],[6]] => 13
[[1,3,4,7],[2,8],[5],[6]] => 15
[[1,2,4,7],[3,8],[5],[6]] => 14
[[1,2,3,7],[4,8],[5],[6]] => 9
[[1,4,5,6],[2,8],[3],[7]] => 13
[[1,3,5,6],[2,8],[4],[7]] => 18
[[1,2,5,6],[3,8],[4],[7]] => 12
[[1,3,4,6],[2,8],[5],[7]] => 17
[[1,2,4,6],[3,8],[5],[7]] => 16
[[1,2,3,6],[4,8],[5],[7]] => 11
[[1,3,4,5],[2,8],[6],[7]] => 14
[[1,2,4,5],[3,8],[6],[7]] => 13
[[1,2,3,5],[4,8],[6],[7]] => 12
[[1,2,3,4],[5,8],[6],[7]] => 8
[[1,4,6,7],[2,5],[3],[8]] => 15
[[1,3,6,7],[2,5],[4],[8]] => 20
[[1,2,6,7],[3,5],[4],[8]] => 14
[[1,3,6,7],[2,4],[5],[8]] => 16
[[1,2,6,7],[3,4],[5],[8]] => 10
[[1,4,5,7],[2,6],[3],[8]] => 14
[[1,3,5,7],[2,6],[4],[8]] => 19
[[1,2,5,7],[3,6],[4],[8]] => 13
[[1,3,4,7],[2,6],[5],[8]] => 18
[[1,2,4,7],[3,6],[5],[8]] => 17
[[1,2,3,7],[4,6],[5],[8]] => 12
[[1,3,5,7],[2,4],[6],[8]] => 19
[[1,2,5,7],[3,4],[6],[8]] => 13
[[1,3,4,7],[2,5],[6],[8]] => 15
[[1,2,4,7],[3,5],[6],[8]] => 14
[[1,2,3,7],[4,5],[6],[8]] => 9
[[1,4,5,6],[2,7],[3],[8]] => 12
[[1,3,5,6],[2,7],[4],[8]] => 17
[[1,2,5,6],[3,7],[4],[8]] => 11
[[1,3,4,6],[2,7],[5],[8]] => 16
[[1,2,4,6],[3,7],[5],[8]] => 15
[[1,2,3,6],[4,7],[5],[8]] => 10
[[1,3,4,5],[2,7],[6],[8]] => 15
[[1,2,4,5],[3,7],[6],[8]] => 14
[[1,2,3,5],[4,7],[6],[8]] => 13
[[1,2,3,4],[5,7],[6],[8]] => 9
[[1,3,5,6],[2,4],[7],[8]] => 17
[[1,2,5,6],[3,4],[7],[8]] => 11
[[1,3,4,6],[2,5],[7],[8]] => 16
[[1,2,4,6],[3,5],[7],[8]] => 15
[[1,2,3,6],[4,5],[7],[8]] => 10
[[1,3,4,5],[2,6],[7],[8]] => 13
[[1,2,4,5],[3,6],[7],[8]] => 12
[[1,2,3,5],[4,6],[7],[8]] => 11
[[1,2,3,4],[5,6],[7],[8]] => 7
[[1,6,7,8],[2],[3],[4],[5]] => 13
[[1,5,7,8],[2],[3],[4],[6]] => 16
[[1,4,7,8],[2],[3],[5],[6]] => 17
[[1,3,7,8],[2],[4],[5],[6]] => 18
[[1,2,7,8],[3],[4],[5],[6]] => 12
[[1,5,6,8],[2],[3],[4],[7]] => 15
[[1,4,6,8],[2],[3],[5],[7]] => 19
[[1,3,6,8],[2],[4],[5],[7]] => 20
[[1,2,6,8],[3],[4],[5],[7]] => 14
[[1,4,5,8],[2],[3],[6],[7]] => 16
[[1,3,5,8],[2],[4],[6],[7]] => 21
[[1,2,5,8],[3],[4],[6],[7]] => 15
[[1,3,4,8],[2],[5],[6],[7]] => 17
[[1,2,4,8],[3],[5],[6],[7]] => 16
[[1,2,3,8],[4],[5],[6],[7]] => 11
[[1,5,6,7],[2],[3],[4],[8]] => 14
[[1,4,6,7],[2],[3],[5],[8]] => 18
[[1,3,6,7],[2],[4],[5],[8]] => 19
[[1,2,6,7],[3],[4],[5],[8]] => 13
[[1,4,5,7],[2],[3],[6],[8]] => 17
[[1,3,5,7],[2],[4],[6],[8]] => 22
[[1,2,5,7],[3],[4],[6],[8]] => 16
[[1,3,4,7],[2],[5],[6],[8]] => 18
[[1,2,4,7],[3],[5],[6],[8]] => 17
[[1,2,3,7],[4],[5],[6],[8]] => 12
[[1,4,5,6],[2],[3],[7],[8]] => 15
[[1,3,5,6],[2],[4],[7],[8]] => 20
[[1,2,5,6],[3],[4],[7],[8]] => 14
[[1,3,4,6],[2],[5],[7],[8]] => 19
[[1,2,4,6],[3],[5],[7],[8]] => 18
[[1,2,3,6],[4],[5],[7],[8]] => 13
[[1,3,4,5],[2],[6],[7],[8]] => 16
[[1,2,4,5],[3],[6],[7],[8]] => 15
[[1,2,3,5],[4],[6],[7],[8]] => 14
[[1,2,3,4],[5],[6],[7],[8]] => 10
[[1,4,7],[2,5,8],[3,6]] => 14
[[1,3,7],[2,5,8],[4,6]] => 19
[[1,2,7],[3,5,8],[4,6]] => 13
[[1,3,7],[2,4,8],[5,6]] => 15
[[1,2,7],[3,4,8],[5,6]] => 9
[[1,4,6],[2,5,8],[3,7]] => 16
[[1,3,6],[2,5,8],[4,7]] => 21
[[1,2,6],[3,5,8],[4,7]] => 15
[[1,3,6],[2,4,8],[5,7]] => 17
[[1,2,6],[3,4,8],[5,7]] => 11
[[1,4,5],[2,6,8],[3,7]] => 13
[[1,3,5],[2,6,8],[4,7]] => 18
[[1,2,5],[3,6,8],[4,7]] => 12
[[1,3,4],[2,6,8],[5,7]] => 17
[[1,2,4],[3,6,8],[5,7]] => 16
[[1,2,3],[4,6,8],[5,7]] => 11
[[1,3,5],[2,4,8],[6,7]] => 18
[[1,2,5],[3,4,8],[6,7]] => 12
[[1,3,4],[2,5,8],[6,7]] => 14
[[1,2,4],[3,5,8],[6,7]] => 13
[[1,2,3],[4,5,8],[6,7]] => 8
[[1,4,6],[2,5,7],[3,8]] => 15
[[1,3,6],[2,5,7],[4,8]] => 20
[[1,2,6],[3,5,7],[4,8]] => 14
[[1,3,6],[2,4,7],[5,8]] => 16
[[1,2,6],[3,4,7],[5,8]] => 10
[[1,4,5],[2,6,7],[3,8]] => 12
[[1,3,5],[2,6,7],[4,8]] => 17
[[1,2,5],[3,6,7],[4,8]] => 11
[[1,3,4],[2,6,7],[5,8]] => 16
[[1,2,4],[3,6,7],[5,8]] => 15
[[1,2,3],[4,6,7],[5,8]] => 10
[[1,3,5],[2,4,7],[6,8]] => 19
[[1,2,5],[3,4,7],[6,8]] => 13
[[1,3,4],[2,5,7],[6,8]] => 15
[[1,2,4],[3,5,7],[6,8]] => 14
[[1,2,3],[4,5,7],[6,8]] => 9
[[1,3,5],[2,4,6],[7,8]] => 17
[[1,2,5],[3,4,6],[7,8]] => 11
[[1,3,4],[2,5,6],[7,8]] => 13
[[1,2,4],[3,5,6],[7,8]] => 12
[[1,2,3],[4,5,6],[7,8]] => 7
[[1,5,7],[2,6,8],[3],[4]] => 14
[[1,4,7],[2,6,8],[3],[5]] => 18
[[1,3,7],[2,6,8],[4],[5]] => 19
[[1,2,7],[3,6,8],[4],[5]] => 13
[[1,4,7],[2,5,8],[3],[6]] => 15
[[1,3,7],[2,5,8],[4],[6]] => 20
[[1,2,7],[3,5,8],[4],[6]] => 14
[[1,3,7],[2,4,8],[5],[6]] => 16
[[1,2,7],[3,4,8],[5],[6]] => 10
[[1,5,6],[2,7,8],[3],[4]] => 12
[[1,4,6],[2,7,8],[3],[5]] => 16
[[1,3,6],[2,7,8],[4],[5]] => 17
[[1,2,6],[3,7,8],[4],[5]] => 11
[[1,4,5],[2,7,8],[3],[6]] => 15
[[1,3,5],[2,7,8],[4],[6]] => 20
[[1,2,5],[3,7,8],[4],[6]] => 14
[[1,3,4],[2,7,8],[5],[6]] => 16
[[1,2,4],[3,7,8],[5],[6]] => 15
[[1,2,3],[4,7,8],[5],[6]] => 10
[[1,4,6],[2,5,8],[3],[7]] => 17
[[1,3,6],[2,5,8],[4],[7]] => 22
[[1,2,6],[3,5,8],[4],[7]] => 16
[[1,3,6],[2,4,8],[5],[7]] => 18
[[1,2,6],[3,4,8],[5],[7]] => 12
[[1,4,5],[2,6,8],[3],[7]] => 14
[[1,3,5],[2,6,8],[4],[7]] => 19
[[1,2,5],[3,6,8],[4],[7]] => 13
[[1,3,4],[2,6,8],[5],[7]] => 18
[[1,2,4],[3,6,8],[5],[7]] => 17
[[1,2,3],[4,6,8],[5],[7]] => 12
[[1,3,5],[2,4,8],[6],[7]] => 19
[[1,2,5],[3,4,8],[6],[7]] => 13
[[1,3,4],[2,5,8],[6],[7]] => 15
[[1,2,4],[3,5,8],[6],[7]] => 14
[[1,2,3],[4,5,8],[6],[7]] => 9
[[1,4,6],[2,5,7],[3],[8]] => 16
[[1,3,6],[2,5,7],[4],[8]] => 21
[[1,2,6],[3,5,7],[4],[8]] => 15
[[1,3,6],[2,4,7],[5],[8]] => 17
[[1,2,6],[3,4,7],[5],[8]] => 11
[[1,4,5],[2,6,7],[3],[8]] => 13
[[1,3,5],[2,6,7],[4],[8]] => 18
[[1,2,5],[3,6,7],[4],[8]] => 12
[[1,3,4],[2,6,7],[5],[8]] => 17
[[1,2,4],[3,6,7],[5],[8]] => 16
[[1,2,3],[4,6,7],[5],[8]] => 11
[[1,3,5],[2,4,7],[6],[8]] => 20
[[1,2,5],[3,4,7],[6],[8]] => 14
[[1,3,4],[2,5,7],[6],[8]] => 16
[[1,2,4],[3,5,7],[6],[8]] => 15
[[1,2,3],[4,5,7],[6],[8]] => 10
[[1,3,5],[2,4,6],[7],[8]] => 18
[[1,2,5],[3,4,6],[7],[8]] => 12
[[1,3,4],[2,5,6],[7],[8]] => 14
[[1,2,4],[3,5,6],[7],[8]] => 13
[[1,2,3],[4,5,6],[7],[8]] => 8
[[1,5,8],[2,6],[3,7],[4]] => 14
[[1,4,8],[2,6],[3,7],[5]] => 18
[[1,3,8],[2,6],[4,7],[5]] => 19
[[1,2,8],[3,6],[4,7],[5]] => 13
[[1,4,8],[2,5],[3,7],[6]] => 17
[[1,3,8],[2,5],[4,7],[6]] => 22
[[1,2,8],[3,5],[4,7],[6]] => 16
[[1,3,8],[2,4],[5,7],[6]] => 18
[[1,2,8],[3,4],[5,7],[6]] => 12
[[1,4,8],[2,5],[3,6],[7]] => 15
[[1,3,8],[2,5],[4,6],[7]] => 20
[[1,2,8],[3,5],[4,6],[7]] => 14
[[1,3,8],[2,4],[5,6],[7]] => 16
[[1,2,8],[3,4],[5,6],[7]] => 10
[[1,5,7],[2,6],[3,8],[4]] => 15
[[1,4,7],[2,6],[3,8],[5]] => 19
[[1,3,7],[2,6],[4,8],[5]] => 20
[[1,2,7],[3,6],[4,8],[5]] => 14
[[1,4,7],[2,5],[3,8],[6]] => 16
[[1,3,7],[2,5],[4,8],[6]] => 21
[[1,2,7],[3,5],[4,8],[6]] => 15
[[1,3,7],[2,4],[5,8],[6]] => 17
[[1,2,7],[3,4],[5,8],[6]] => 11
[[1,5,6],[2,7],[3,8],[4]] => 13
[[1,4,6],[2,7],[3,8],[5]] => 17
[[1,3,6],[2,7],[4,8],[5]] => 18
[[1,2,6],[3,7],[4,8],[5]] => 12
[[1,4,5],[2,7],[3,8],[6]] => 16
[[1,3,5],[2,7],[4,8],[6]] => 21
[[1,2,5],[3,7],[4,8],[6]] => 15
[[1,3,4],[2,7],[5,8],[6]] => 17
[[1,2,4],[3,7],[5,8],[6]] => 16
[[1,2,3],[4,7],[5,8],[6]] => 11
[[1,4,6],[2,5],[3,8],[7]] => 18
[[1,3,6],[2,5],[4,8],[7]] => 23
[[1,2,6],[3,5],[4,8],[7]] => 17
[[1,3,6],[2,4],[5,8],[7]] => 19
[[1,2,6],[3,4],[5,8],[7]] => 13
[[1,4,5],[2,6],[3,8],[7]] => 15
[[1,3,5],[2,6],[4,8],[7]] => 20
[[1,2,5],[3,6],[4,8],[7]] => 14
[[1,3,4],[2,6],[5,8],[7]] => 19
[[1,2,4],[3,6],[5,8],[7]] => 18
[[1,2,3],[4,6],[5,8],[7]] => 13
[[1,3,5],[2,4],[6,8],[7]] => 20
[[1,2,5],[3,4],[6,8],[7]] => 14
[[1,3,4],[2,5],[6,8],[7]] => 16
[[1,2,4],[3,5],[6,8],[7]] => 15
[[1,2,3],[4,5],[6,8],[7]] => 10
[[1,4,7],[2,5],[3,6],[8]] => 16
[[1,3,7],[2,5],[4,6],[8]] => 21
[[1,2,7],[3,5],[4,6],[8]] => 15
[[1,3,7],[2,4],[5,6],[8]] => 17
[[1,2,7],[3,4],[5,6],[8]] => 11
[[1,4,6],[2,5],[3,7],[8]] => 17
[[1,3,6],[2,5],[4,7],[8]] => 22
[[1,2,6],[3,5],[4,7],[8]] => 16
[[1,3,6],[2,4],[5,7],[8]] => 18
[[1,2,6],[3,4],[5,7],[8]] => 12
[[1,4,5],[2,6],[3,7],[8]] => 14
[[1,3,5],[2,6],[4,7],[8]] => 19
[[1,2,5],[3,6],[4,7],[8]] => 13
[[1,3,4],[2,6],[5,7],[8]] => 18
[[1,2,4],[3,6],[5,7],[8]] => 17
[[1,2,3],[4,6],[5,7],[8]] => 12
[[1,3,5],[2,4],[6,7],[8]] => 19
[[1,2,5],[3,4],[6,7],[8]] => 13
[[1,3,4],[2,5],[6,7],[8]] => 15
[[1,2,4],[3,5],[6,7],[8]] => 14
[[1,2,3],[4,5],[6,7],[8]] => 9
[[1,6,8],[2,7],[3],[4],[5]] => 15
[[1,5,8],[2,7],[3],[4],[6]] => 18
[[1,4,8],[2,7],[3],[5],[6]] => 19
[[1,3,8],[2,7],[4],[5],[6]] => 20
[[1,2,8],[3,7],[4],[5],[6]] => 14
[[1,5,8],[2,6],[3],[4],[7]] => 16
[[1,4,8],[2,6],[3],[5],[7]] => 20
[[1,3,8],[2,6],[4],[5],[7]] => 21
[[1,2,8],[3,6],[4],[5],[7]] => 15
[[1,4,8],[2,5],[3],[6],[7]] => 17
[[1,3,8],[2,5],[4],[6],[7]] => 22
[[1,2,8],[3,5],[4],[6],[7]] => 16
[[1,3,8],[2,4],[5],[6],[7]] => 18
[[1,2,8],[3,4],[5],[6],[7]] => 12
[[1,6,7],[2,8],[3],[4],[5]] => 14
[[1,5,7],[2,8],[3],[4],[6]] => 17
[[1,4,7],[2,8],[3],[5],[6]] => 18
[[1,3,7],[2,8],[4],[5],[6]] => 19
[[1,2,7],[3,8],[4],[5],[6]] => 13
[[1,5,6],[2,8],[3],[4],[7]] => 16
[[1,4,6],[2,8],[3],[5],[7]] => 20
[[1,3,6],[2,8],[4],[5],[7]] => 21
[[1,2,6],[3,8],[4],[5],[7]] => 15
[[1,4,5],[2,8],[3],[6],[7]] => 17
[[1,3,5],[2,8],[4],[6],[7]] => 22
[[1,2,5],[3,8],[4],[6],[7]] => 16
[[1,3,4],[2,8],[5],[6],[7]] => 18
[[1,2,4],[3,8],[5],[6],[7]] => 17
[[1,2,3],[4,8],[5],[6],[7]] => 12
[[1,5,7],[2,6],[3],[4],[8]] => 17
[[1,4,7],[2,6],[3],[5],[8]] => 21
[[1,3,7],[2,6],[4],[5],[8]] => 22
[[1,2,7],[3,6],[4],[5],[8]] => 16
[[1,4,7],[2,5],[3],[6],[8]] => 18
[[1,3,7],[2,5],[4],[6],[8]] => 23
[[1,2,7],[3,5],[4],[6],[8]] => 17
[[1,3,7],[2,4],[5],[6],[8]] => 19
[[1,2,7],[3,4],[5],[6],[8]] => 13
[[1,5,6],[2,7],[3],[4],[8]] => 15
[[1,4,6],[2,7],[3],[5],[8]] => 19
[[1,3,6],[2,7],[4],[5],[8]] => 20
[[1,2,6],[3,7],[4],[5],[8]] => 14
[[1,4,5],[2,7],[3],[6],[8]] => 18
[[1,3,5],[2,7],[4],[6],[8]] => 23
[[1,2,5],[3,7],[4],[6],[8]] => 17
[[1,3,4],[2,7],[5],[6],[8]] => 19
[[1,2,4],[3,7],[5],[6],[8]] => 18
[[1,2,3],[4,7],[5],[6],[8]] => 13
[[1,4,6],[2,5],[3],[7],[8]] => 19
[[1,3,6],[2,5],[4],[7],[8]] => 24
[[1,2,6],[3,5],[4],[7],[8]] => 18
[[1,3,6],[2,4],[5],[7],[8]] => 20
[[1,2,6],[3,4],[5],[7],[8]] => 14
[[1,4,5],[2,6],[3],[7],[8]] => 16
[[1,3,5],[2,6],[4],[7],[8]] => 21
[[1,2,5],[3,6],[4],[7],[8]] => 15
[[1,3,4],[2,6],[5],[7],[8]] => 20
[[1,2,4],[3,6],[5],[7],[8]] => 19
[[1,2,3],[4,6],[5],[7],[8]] => 14
[[1,3,5],[2,4],[6],[7],[8]] => 21
[[1,2,5],[3,4],[6],[7],[8]] => 15
[[1,3,4],[2,5],[6],[7],[8]] => 17
[[1,2,4],[3,5],[6],[7],[8]] => 16
[[1,2,3],[4,5],[6],[7],[8]] => 11
[[1,7,8],[2],[3],[4],[5],[6]] => 17
[[1,6,8],[2],[3],[4],[5],[7]] => 19
[[1,5,8],[2],[3],[4],[6],[7]] => 20
[[1,4,8],[2],[3],[5],[6],[7]] => 21
[[1,3,8],[2],[4],[5],[6],[7]] => 22
[[1,2,8],[3],[4],[5],[6],[7]] => 16
[[1,6,7],[2],[3],[4],[5],[8]] => 18
[[1,5,7],[2],[3],[4],[6],[8]] => 21
[[1,4,7],[2],[3],[5],[6],[8]] => 22
[[1,3,7],[2],[4],[5],[6],[8]] => 23
[[1,2,7],[3],[4],[5],[6],[8]] => 17
[[1,5,6],[2],[3],[4],[7],[8]] => 19
[[1,4,6],[2],[3],[5],[7],[8]] => 23
[[1,3,6],[2],[4],[5],[7],[8]] => 24
[[1,2,6],[3],[4],[5],[7],[8]] => 18
[[1,4,5],[2],[3],[6],[7],[8]] => 20
[[1,3,5],[2],[4],[6],[7],[8]] => 25
[[1,2,5],[3],[4],[6],[7],[8]] => 19
[[1,3,4],[2],[5],[6],[7],[8]] => 21
[[1,2,4],[3],[5],[6],[7],[8]] => 20
[[1,2,3],[4],[5],[6],[7],[8]] => 15
[[1,5],[2,6],[3,7],[4,8]] => 16
[[1,4],[2,6],[3,7],[5,8]] => 20
[[1,3],[2,6],[4,7],[5,8]] => 21
[[1,2],[3,6],[4,7],[5,8]] => 15
[[1,4],[2,5],[3,7],[6,8]] => 19
[[1,3],[2,5],[4,7],[6,8]] => 24
[[1,2],[3,5],[4,7],[6,8]] => 18
[[1,3],[2,4],[5,7],[6,8]] => 20
[[1,2],[3,4],[5,7],[6,8]] => 14
[[1,4],[2,5],[3,6],[7,8]] => 17
[[1,3],[2,5],[4,6],[7,8]] => 22
[[1,2],[3,5],[4,6],[7,8]] => 16
[[1,3],[2,4],[5,6],[7,8]] => 18
[[1,2],[3,4],[5,6],[7,8]] => 12
[[1,6],[2,7],[3,8],[4],[5]] => 16
[[1,5],[2,7],[3,8],[4],[6]] => 19
[[1,4],[2,7],[3,8],[5],[6]] => 20
[[1,3],[2,7],[4,8],[5],[6]] => 21
[[1,2],[3,7],[4,8],[5],[6]] => 15
[[1,5],[2,6],[3,8],[4],[7]] => 18
[[1,4],[2,6],[3,8],[5],[7]] => 22
[[1,3],[2,6],[4,8],[5],[7]] => 23
[[1,2],[3,6],[4,8],[5],[7]] => 17
[[1,4],[2,5],[3,8],[6],[7]] => 19
[[1,3],[2,5],[4,8],[6],[7]] => 24
[[1,2],[3,5],[4,8],[6],[7]] => 18
[[1,3],[2,4],[5,8],[6],[7]] => 20
[[1,2],[3,4],[5,8],[6],[7]] => 14
[[1,5],[2,6],[3,7],[4],[8]] => 17
[[1,4],[2,6],[3,7],[5],[8]] => 21
[[1,3],[2,6],[4,7],[5],[8]] => 22
[[1,2],[3,6],[4,7],[5],[8]] => 16
[[1,4],[2,5],[3,7],[6],[8]] => 20
[[1,3],[2,5],[4,7],[6],[8]] => 25
[[1,2],[3,5],[4,7],[6],[8]] => 19
[[1,3],[2,4],[5,7],[6],[8]] => 21
[[1,2],[3,4],[5,7],[6],[8]] => 15
[[1,4],[2,5],[3,6],[7],[8]] => 18
[[1,3],[2,5],[4,6],[7],[8]] => 23
[[1,2],[3,5],[4,6],[7],[8]] => 17
[[1,3],[2,4],[5,6],[7],[8]] => 19
[[1,2],[3,4],[5,6],[7],[8]] => 13
[[1,7],[2,8],[3],[4],[5],[6]] => 18
[[1,6],[2,8],[3],[4],[5],[7]] => 20
[[1,5],[2,8],[3],[4],[6],[7]] => 21
[[1,4],[2,8],[3],[5],[6],[7]] => 22
[[1,3],[2,8],[4],[5],[6],[7]] => 23
[[1,2],[3,8],[4],[5],[6],[7]] => 17
[[1,6],[2,7],[3],[4],[5],[8]] => 19
[[1,5],[2,7],[3],[4],[6],[8]] => 22
[[1,4],[2,7],[3],[5],[6],[8]] => 23
[[1,3],[2,7],[4],[5],[6],[8]] => 24
[[1,2],[3,7],[4],[5],[6],[8]] => 18
[[1,5],[2,6],[3],[4],[7],[8]] => 20
[[1,4],[2,6],[3],[5],[7],[8]] => 24
[[1,3],[2,6],[4],[5],[7],[8]] => 25
[[1,2],[3,6],[4],[5],[7],[8]] => 19
[[1,4],[2,5],[3],[6],[7],[8]] => 21
[[1,3],[2,5],[4],[6],[7],[8]] => 26
[[1,2],[3,5],[4],[6],[7],[8]] => 20
[[1,3],[2,4],[5],[6],[7],[8]] => 22
[[1,2],[3,4],[5],[6],[7],[8]] => 16
[[1,8],[2],[3],[4],[5],[6],[7]] => 22
[[1,7],[2],[3],[4],[5],[6],[8]] => 23
[[1,6],[2],[3],[4],[5],[7],[8]] => 24
[[1,5],[2],[3],[4],[6],[7],[8]] => 25
[[1,4],[2],[3],[5],[6],[7],[8]] => 26
[[1,3],[2],[4],[5],[6],[7],[8]] => 27
[[1,2],[3],[4],[5],[6],[7],[8]] => 21
[[1],[2],[3],[4],[5],[6],[7],[8]] => 28
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Generating function
click to show known generating functions
Search the OEIS for these generating functions
Search the Online Encyclopedia of Integer
Sequences for the coefficients of a few of the
first generating functions, in the case at hand:
1,1 1,1,1,1 1,1,2,2,2,1,1 1,1,2,3,4,4,4,3,2,1,1 1,1,2,4,5,7,9,9,9,9,7,5,4,2,1,1 1,1,2,4,6,9,13,16,19,22,23,23,22,19,16,13,9,6,4,2,1,1 1,1,2,4,7,10,16,22,30,37,46,52,60,62,64,62,60,52,46,37,30,22,16,10,7,4,2,1,1
$F_{1} = 1$
$F_{2} = 1 + q$
$F_{3} = 1 + q + q^{2} + q^{3}$
$F_{4} = 1 + q + 2\ q^{2} + 2\ q^{3} + 2\ q^{4} + q^{5} + q^{6}$
$F_{5} = 1 + q + 2\ q^{2} + 3\ q^{3} + 4\ q^{4} + 4\ q^{5} + 4\ q^{6} + 3\ q^{7} + 2\ q^{8} + q^{9} + q^{10}$
$F_{6} = 1 + q + 2\ q^{2} + 4\ q^{3} + 5\ q^{4} + 7\ q^{5} + 9\ q^{6} + 9\ q^{7} + 9\ q^{8} + 9\ q^{9} + 7\ q^{10} + 5\ q^{11} + 4\ q^{12} + 2\ q^{13} + q^{14} + q^{15}$
$F_{7} = 1 + q + 2\ q^{2} + 4\ q^{3} + 6\ q^{4} + 9\ q^{5} + 13\ q^{6} + 16\ q^{7} + 19\ q^{8} + 22\ q^{9} + 23\ q^{10} + 23\ q^{11} + 22\ q^{12} + 19\ q^{13} + 16\ q^{14} + 13\ q^{15} + 9\ q^{16} + 6\ q^{17} + 4\ q^{18} + 2\ q^{19} + q^{20} + q^{21}$
$F_{8} = 1 + q + 2\ q^{2} + 4\ q^{3} + 7\ q^{4} + 10\ q^{5} + 16\ q^{6} + 22\ q^{7} + 30\ q^{8} + 37\ q^{9} + 46\ q^{10} + 52\ q^{11} + 60\ q^{12} + 62\ q^{13} + 64\ q^{14} + 62\ q^{15} + 60\ q^{16} + 52\ q^{17} + 46\ q^{18} + 37\ q^{19} + 30\ q^{20} + 22\ q^{21} + 16\ q^{22} + 10\ q^{23} + 7\ q^{24} + 4\ q^{25} + 2\ q^{26} + q^{27} + q^{28}$
Description
The shifted natural comajor index of a standard Young tableau.
A natural descent of a standard tableau $T$ is an entry $i$ such that $i+1$ appears in a higher row than $i$ in English notation.
The natural comajor index of a tableau of shape $\lambda$, size $n$ with natural descent set $D$ is then $b(\lambda)+\sum_{d\in D} n-d$, where $b(\lambda) = \sum_i (i-1)\lambda_i$.
A natural descent of a standard tableau $T$ is an entry $i$ such that $i+1$ appears in a higher row than $i$ in English notation.
The natural comajor index of a tableau of shape $\lambda$, size $n$ with natural descent set $D$ is then $b(\lambda)+\sum_{d\in D} n-d$, where $b(\lambda) = \sum_i (i-1)\lambda_i$.
References
[1] Hopkins, S. Two majs for standard Young tableaux? MathOverflow:385374
Code
def natural_descents(T):
n = T.size()
D = []
for i in range(1, n):
for row in T:
if row.count(i):
break
if row.count(i+1):
D.append(i)
break
return D
def statistic(T):
n = T.size()
D = natural_descents(T)
return sum(n-d for d in D) + sum(i*p for i, p in enumerate(T.shape()))
Created
Mar 04, 2021 at 08:53 by Martin Rubey
Updated
Mar 15, 2021 at 15:39 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!