Identifier
Values
[[1]] => 0
[[1,2]] => 0
[[1],[2]] => 1
[[1,2,3]] => 0
[[1,3],[2]] => 2
[[1,2],[3]] => 1
[[1],[2],[3]] => 3
[[1,2,3,4]] => 0
[[1,3,4],[2]] => 3
[[1,2,4],[3]] => 2
[[1,2,3],[4]] => 1
[[1,3],[2,4]] => 4
[[1,2],[3,4]] => 2
[[1,4],[2],[3]] => 4
[[1,3],[2],[4]] => 5
[[1,2],[3],[4]] => 3
[[1],[2],[3],[4]] => 6
[[1,2,3,4,5]] => 0
[[1,3,4,5],[2]] => 4
[[1,2,4,5],[3]] => 3
[[1,2,3,5],[4]] => 2
[[1,2,3,4],[5]] => 1
[[1,3,5],[2,4]] => 6
[[1,2,5],[3,4]] => 3
[[1,3,4],[2,5]] => 5
[[1,2,4],[3,5]] => 4
[[1,2,3],[4,5]] => 2
[[1,4,5],[2],[3]] => 5
[[1,3,5],[2],[4]] => 7
[[1,2,5],[3],[4]] => 4
[[1,3,4],[2],[5]] => 6
[[1,2,4],[3],[5]] => 5
[[1,2,3],[4],[5]] => 3
[[1,4],[2,5],[3]] => 6
[[1,3],[2,5],[4]] => 8
[[1,2],[3,5],[4]] => 5
[[1,3],[2,4],[5]] => 7
[[1,2],[3,4],[5]] => 4
[[1,5],[2],[3],[4]] => 7
[[1,4],[2],[3],[5]] => 8
[[1,3],[2],[4],[5]] => 9
[[1,2],[3],[4],[5]] => 6
[[1],[2],[3],[4],[5]] => 10
[[1,2,3,4,5,6]] => 0
[[1,3,4,5,6],[2]] => 5
[[1,2,4,5,6],[3]] => 4
[[1,2,3,5,6],[4]] => 3
[[1,2,3,4,6],[5]] => 2
[[1,2,3,4,5],[6]] => 1
[[1,3,5,6],[2,4]] => 8
[[1,2,5,6],[3,4]] => 4
[[1,3,4,6],[2,5]] => 7
[[1,2,4,6],[3,5]] => 6
[[1,2,3,6],[4,5]] => 3
[[1,3,4,5],[2,6]] => 6
[[1,2,4,5],[3,6]] => 5
[[1,2,3,5],[4,6]] => 4
[[1,2,3,4],[5,6]] => 2
[[1,4,5,6],[2],[3]] => 6
[[1,3,5,6],[2],[4]] => 9
[[1,2,5,6],[3],[4]] => 5
[[1,3,4,6],[2],[5]] => 8
[[1,2,4,6],[3],[5]] => 7
[[1,2,3,6],[4],[5]] => 4
[[1,3,4,5],[2],[6]] => 7
[[1,2,4,5],[3],[6]] => 6
[[1,2,3,5],[4],[6]] => 5
[[1,2,3,4],[5],[6]] => 3
[[1,3,5],[2,4,6]] => 9
[[1,2,5],[3,4,6]] => 5
[[1,3,4],[2,5,6]] => 7
[[1,2,4],[3,5,6]] => 6
[[1,2,3],[4,5,6]] => 3
[[1,4,6],[2,5],[3]] => 8
[[1,3,6],[2,5],[4]] => 11
[[1,2,6],[3,5],[4]] => 7
[[1,3,6],[2,4],[5]] => 9
[[1,2,6],[3,4],[5]] => 5
[[1,4,5],[2,6],[3]] => 7
[[1,3,5],[2,6],[4]] => 10
[[1,2,5],[3,6],[4]] => 6
[[1,3,4],[2,6],[5]] => 9
[[1,2,4],[3,6],[5]] => 8
[[1,2,3],[4,6],[5]] => 5
[[1,3,5],[2,4],[6]] => 10
[[1,2,5],[3,4],[6]] => 6
[[1,3,4],[2,5],[6]] => 8
[[1,2,4],[3,5],[6]] => 7
[[1,2,3],[4,5],[6]] => 4
[[1,5,6],[2],[3],[4]] => 8
[[1,4,6],[2],[3],[5]] => 10
[[1,3,6],[2],[4],[5]] => 11
[[1,2,6],[3],[4],[5]] => 7
[[1,4,5],[2],[3],[6]] => 9
[[1,3,5],[2],[4],[6]] => 12
[[1,2,5],[3],[4],[6]] => 8
[[1,3,4],[2],[5],[6]] => 10
[[1,2,4],[3],[5],[6]] => 9
[[1,2,3],[4],[5],[6]] => 6
[[1,4],[2,5],[3,6]] => 9
[[1,3],[2,5],[4,6]] => 12
>>> Load all 1115 entries. <<<[[1,2],[3,5],[4,6]] => 8
[[1,3],[2,4],[5,6]] => 10
[[1,2],[3,4],[5,6]] => 6
[[1,5],[2,6],[3],[4]] => 9
[[1,4],[2,6],[3],[5]] => 11
[[1,3],[2,6],[4],[5]] => 12
[[1,2],[3,6],[4],[5]] => 8
[[1,4],[2,5],[3],[6]] => 10
[[1,3],[2,5],[4],[6]] => 13
[[1,2],[3,5],[4],[6]] => 9
[[1,3],[2,4],[5],[6]] => 11
[[1,2],[3,4],[5],[6]] => 7
[[1,6],[2],[3],[4],[5]] => 11
[[1,5],[2],[3],[4],[6]] => 12
[[1,4],[2],[3],[5],[6]] => 13
[[1,3],[2],[4],[5],[6]] => 14
[[1,2],[3],[4],[5],[6]] => 10
[[1],[2],[3],[4],[5],[6]] => 15
[[1,2,3,4,5,6,7]] => 0
[[1,3,4,5,6,7],[2]] => 6
[[1,2,4,5,6,7],[3]] => 5
[[1,2,3,5,6,7],[4]] => 4
[[1,2,3,4,6,7],[5]] => 3
[[1,2,3,4,5,7],[6]] => 2
[[1,2,3,4,5,6],[7]] => 1
[[1,3,5,6,7],[2,4]] => 10
[[1,2,5,6,7],[3,4]] => 5
[[1,3,4,6,7],[2,5]] => 9
[[1,2,4,6,7],[3,5]] => 8
[[1,2,3,6,7],[4,5]] => 4
[[1,3,4,5,7],[2,6]] => 8
[[1,2,4,5,7],[3,6]] => 7
[[1,2,3,5,7],[4,6]] => 6
[[1,2,3,4,7],[5,6]] => 3
[[1,3,4,5,6],[2,7]] => 7
[[1,2,4,5,6],[3,7]] => 6
[[1,2,3,5,6],[4,7]] => 5
[[1,2,3,4,6],[5,7]] => 4
[[1,2,3,4,5],[6,7]] => 2
[[1,4,5,6,7],[2],[3]] => 7
[[1,3,5,6,7],[2],[4]] => 11
[[1,2,5,6,7],[3],[4]] => 6
[[1,3,4,6,7],[2],[5]] => 10
[[1,2,4,6,7],[3],[5]] => 9
[[1,2,3,6,7],[4],[5]] => 5
[[1,3,4,5,7],[2],[6]] => 9
[[1,2,4,5,7],[3],[6]] => 8
[[1,2,3,5,7],[4],[6]] => 7
[[1,2,3,4,7],[5],[6]] => 4
[[1,3,4,5,6],[2],[7]] => 8
[[1,2,4,5,6],[3],[7]] => 7
[[1,2,3,5,6],[4],[7]] => 6
[[1,2,3,4,6],[5],[7]] => 5
[[1,2,3,4,5],[6],[7]] => 3
[[1,3,5,7],[2,4,6]] => 12
[[1,2,5,7],[3,4,6]] => 7
[[1,3,4,7],[2,5,6]] => 9
[[1,2,4,7],[3,5,6]] => 8
[[1,2,3,7],[4,5,6]] => 4
[[1,3,5,6],[2,4,7]] => 11
[[1,2,5,6],[3,4,7]] => 6
[[1,3,4,6],[2,5,7]] => 10
[[1,2,4,6],[3,5,7]] => 9
[[1,2,3,6],[4,5,7]] => 5
[[1,3,4,5],[2,6,7]] => 8
[[1,2,4,5],[3,6,7]] => 7
[[1,2,3,5],[4,6,7]] => 6
[[1,2,3,4],[5,6,7]] => 3
[[1,4,6,7],[2,5],[3]] => 10
[[1,3,6,7],[2,5],[4]] => 14
[[1,2,6,7],[3,5],[4]] => 9
[[1,3,6,7],[2,4],[5]] => 11
[[1,2,6,7],[3,4],[5]] => 6
[[1,4,5,7],[2,6],[3]] => 9
[[1,3,5,7],[2,6],[4]] => 13
[[1,2,5,7],[3,6],[4]] => 8
[[1,3,4,7],[2,6],[5]] => 12
[[1,2,4,7],[3,6],[5]] => 11
[[1,2,3,7],[4,6],[5]] => 7
[[1,3,5,7],[2,4],[6]] => 13
[[1,2,5,7],[3,4],[6]] => 8
[[1,3,4,7],[2,5],[6]] => 10
[[1,2,4,7],[3,5],[6]] => 9
[[1,2,3,7],[4,5],[6]] => 5
[[1,4,5,6],[2,7],[3]] => 8
[[1,3,5,6],[2,7],[4]] => 12
[[1,2,5,6],[3,7],[4]] => 7
[[1,3,4,6],[2,7],[5]] => 11
[[1,2,4,6],[3,7],[5]] => 10
[[1,2,3,6],[4,7],[5]] => 6
[[1,3,4,5],[2,7],[6]] => 10
[[1,2,4,5],[3,7],[6]] => 9
[[1,2,3,5],[4,7],[6]] => 8
[[1,2,3,4],[5,7],[6]] => 5
[[1,3,5,6],[2,4],[7]] => 12
[[1,2,5,6],[3,4],[7]] => 7
[[1,3,4,6],[2,5],[7]] => 11
[[1,2,4,6],[3,5],[7]] => 10
[[1,2,3,6],[4,5],[7]] => 6
[[1,3,4,5],[2,6],[7]] => 9
[[1,2,4,5],[3,6],[7]] => 8
[[1,2,3,5],[4,6],[7]] => 7
[[1,2,3,4],[5,6],[7]] => 4
[[1,5,6,7],[2],[3],[4]] => 9
[[1,4,6,7],[2],[3],[5]] => 12
[[1,3,6,7],[2],[4],[5]] => 13
[[1,2,6,7],[3],[4],[5]] => 8
[[1,4,5,7],[2],[3],[6]] => 11
[[1,3,5,7],[2],[4],[6]] => 15
[[1,2,5,7],[3],[4],[6]] => 10
[[1,3,4,7],[2],[5],[6]] => 12
[[1,2,4,7],[3],[5],[6]] => 11
[[1,2,3,7],[4],[5],[6]] => 7
[[1,4,5,6],[2],[3],[7]] => 10
[[1,3,5,6],[2],[4],[7]] => 14
[[1,2,5,6],[3],[4],[7]] => 9
[[1,3,4,6],[2],[5],[7]] => 13
[[1,2,4,6],[3],[5],[7]] => 12
[[1,2,3,6],[4],[5],[7]] => 8
[[1,3,4,5],[2],[6],[7]] => 11
[[1,2,4,5],[3],[6],[7]] => 10
[[1,2,3,5],[4],[6],[7]] => 9
[[1,2,3,4],[5],[6],[7]] => 6
[[1,4,6],[2,5,7],[3]] => 11
[[1,3,6],[2,5,7],[4]] => 15
[[1,2,6],[3,5,7],[4]] => 10
[[1,3,6],[2,4,7],[5]] => 12
[[1,2,6],[3,4,7],[5]] => 7
[[1,4,5],[2,6,7],[3]] => 9
[[1,3,5],[2,6,7],[4]] => 13
[[1,2,5],[3,6,7],[4]] => 8
[[1,3,4],[2,6,7],[5]] => 12
[[1,2,4],[3,6,7],[5]] => 11
[[1,2,3],[4,6,7],[5]] => 7
[[1,3,5],[2,4,7],[6]] => 14
[[1,2,5],[3,4,7],[6]] => 9
[[1,3,4],[2,5,7],[6]] => 11
[[1,2,4],[3,5,7],[6]] => 10
[[1,2,3],[4,5,7],[6]] => 6
[[1,3,5],[2,4,6],[7]] => 13
[[1,2,5],[3,4,6],[7]] => 8
[[1,3,4],[2,5,6],[7]] => 10
[[1,2,4],[3,5,6],[7]] => 9
[[1,2,3],[4,5,6],[7]] => 5
[[1,4,7],[2,5],[3,6]] => 11
[[1,3,7],[2,5],[4,6]] => 15
[[1,2,7],[3,5],[4,6]] => 10
[[1,3,7],[2,4],[5,6]] => 12
[[1,2,7],[3,4],[5,6]] => 7
[[1,4,6],[2,5],[3,7]] => 12
[[1,3,6],[2,5],[4,7]] => 16
[[1,2,6],[3,5],[4,7]] => 11
[[1,3,6],[2,4],[5,7]] => 13
[[1,2,6],[3,4],[5,7]] => 8
[[1,4,5],[2,6],[3,7]] => 10
[[1,3,5],[2,6],[4,7]] => 14
[[1,2,5],[3,6],[4,7]] => 9
[[1,3,4],[2,6],[5,7]] => 13
[[1,2,4],[3,6],[5,7]] => 12
[[1,2,3],[4,6],[5,7]] => 8
[[1,3,5],[2,4],[6,7]] => 14
[[1,2,5],[3,4],[6,7]] => 9
[[1,3,4],[2,5],[6,7]] => 11
[[1,2,4],[3,5],[6,7]] => 10
[[1,2,3],[4,5],[6,7]] => 6
[[1,5,7],[2,6],[3],[4]] => 11
[[1,4,7],[2,6],[3],[5]] => 14
[[1,3,7],[2,6],[4],[5]] => 15
[[1,2,7],[3,6],[4],[5]] => 10
[[1,4,7],[2,5],[3],[6]] => 12
[[1,3,7],[2,5],[4],[6]] => 16
[[1,2,7],[3,5],[4],[6]] => 11
[[1,3,7],[2,4],[5],[6]] => 13
[[1,2,7],[3,4],[5],[6]] => 8
[[1,5,6],[2,7],[3],[4]] => 10
[[1,4,6],[2,7],[3],[5]] => 13
[[1,3,6],[2,7],[4],[5]] => 14
[[1,2,6],[3,7],[4],[5]] => 9
[[1,4,5],[2,7],[3],[6]] => 12
[[1,3,5],[2,7],[4],[6]] => 16
[[1,2,5],[3,7],[4],[6]] => 11
[[1,3,4],[2,7],[5],[6]] => 13
[[1,2,4],[3,7],[5],[6]] => 12
[[1,2,3],[4,7],[5],[6]] => 8
[[1,4,6],[2,5],[3],[7]] => 13
[[1,3,6],[2,5],[4],[7]] => 17
[[1,2,6],[3,5],[4],[7]] => 12
[[1,3,6],[2,4],[5],[7]] => 14
[[1,2,6],[3,4],[5],[7]] => 9
[[1,4,5],[2,6],[3],[7]] => 11
[[1,3,5],[2,6],[4],[7]] => 15
[[1,2,5],[3,6],[4],[7]] => 10
[[1,3,4],[2,6],[5],[7]] => 14
[[1,2,4],[3,6],[5],[7]] => 13
[[1,2,3],[4,6],[5],[7]] => 9
[[1,3,5],[2,4],[6],[7]] => 15
[[1,2,5],[3,4],[6],[7]] => 10
[[1,3,4],[2,5],[6],[7]] => 12
[[1,2,4],[3,5],[6],[7]] => 11
[[1,2,3],[4,5],[6],[7]] => 7
[[1,6,7],[2],[3],[4],[5]] => 12
[[1,5,7],[2],[3],[4],[6]] => 14
[[1,4,7],[2],[3],[5],[6]] => 15
[[1,3,7],[2],[4],[5],[6]] => 16
[[1,2,7],[3],[4],[5],[6]] => 11
[[1,5,6],[2],[3],[4],[7]] => 13
[[1,4,6],[2],[3],[5],[7]] => 16
[[1,3,6],[2],[4],[5],[7]] => 17
[[1,2,6],[3],[4],[5],[7]] => 12
[[1,4,5],[2],[3],[6],[7]] => 14
[[1,3,5],[2],[4],[6],[7]] => 18
[[1,2,5],[3],[4],[6],[7]] => 13
[[1,3,4],[2],[5],[6],[7]] => 15
[[1,2,4],[3],[5],[6],[7]] => 14
[[1,2,3],[4],[5],[6],[7]] => 10
[[1,5],[2,6],[3,7],[4]] => 12
[[1,4],[2,6],[3,7],[5]] => 15
[[1,3],[2,6],[4,7],[5]] => 16
[[1,2],[3,6],[4,7],[5]] => 11
[[1,4],[2,5],[3,7],[6]] => 14
[[1,3],[2,5],[4,7],[6]] => 18
[[1,2],[3,5],[4,7],[6]] => 13
[[1,3],[2,4],[5,7],[6]] => 15
[[1,2],[3,4],[5,7],[6]] => 10
[[1,4],[2,5],[3,6],[7]] => 13
[[1,3],[2,5],[4,6],[7]] => 17
[[1,2],[3,5],[4,6],[7]] => 12
[[1,3],[2,4],[5,6],[7]] => 14
[[1,2],[3,4],[5,6],[7]] => 9
[[1,6],[2,7],[3],[4],[5]] => 13
[[1,5],[2,7],[3],[4],[6]] => 15
[[1,4],[2,7],[3],[5],[6]] => 16
[[1,3],[2,7],[4],[5],[6]] => 17
[[1,2],[3,7],[4],[5],[6]] => 12
[[1,5],[2,6],[3],[4],[7]] => 14
[[1,4],[2,6],[3],[5],[7]] => 17
[[1,3],[2,6],[4],[5],[7]] => 18
[[1,2],[3,6],[4],[5],[7]] => 13
[[1,4],[2,5],[3],[6],[7]] => 15
[[1,3],[2,5],[4],[6],[7]] => 19
[[1,2],[3,5],[4],[6],[7]] => 14
[[1,3],[2,4],[5],[6],[7]] => 16
[[1,2],[3,4],[5],[6],[7]] => 11
[[1,7],[2],[3],[4],[5],[6]] => 16
[[1,6],[2],[3],[4],[5],[7]] => 17
[[1,5],[2],[3],[4],[6],[7]] => 18
[[1,4],[2],[3],[5],[6],[7]] => 19
[[1,3],[2],[4],[5],[6],[7]] => 20
[[1,2],[3],[4],[5],[6],[7]] => 15
[[1],[2],[3],[4],[5],[6],[7]] => 21
[[1,2,3,4,5,6,7,8]] => 0
[[1,3,4,5,6,7,8],[2]] => 7
[[1,2,4,5,6,7,8],[3]] => 6
[[1,2,3,5,6,7,8],[4]] => 5
[[1,2,3,4,6,7,8],[5]] => 4
[[1,2,3,4,5,7,8],[6]] => 3
[[1,2,3,4,5,6,8],[7]] => 2
[[1,2,3,4,5,6,7],[8]] => 1
[[1,3,5,6,7,8],[2,4]] => 12
[[1,2,5,6,7,8],[3,4]] => 6
[[1,3,4,6,7,8],[2,5]] => 11
[[1,2,4,6,7,8],[3,5]] => 10
[[1,2,3,6,7,8],[4,5]] => 5
[[1,3,4,5,7,8],[2,6]] => 10
[[1,2,4,5,7,8],[3,6]] => 9
[[1,2,3,5,7,8],[4,6]] => 8
[[1,2,3,4,7,8],[5,6]] => 4
[[1,3,4,5,6,8],[2,7]] => 9
[[1,2,4,5,6,8],[3,7]] => 8
[[1,2,3,5,6,8],[4,7]] => 7
[[1,2,3,4,6,8],[5,7]] => 6
[[1,2,3,4,5,8],[6,7]] => 3
[[1,3,4,5,6,7],[2,8]] => 8
[[1,2,4,5,6,7],[3,8]] => 7
[[1,2,3,5,6,7],[4,8]] => 6
[[1,2,3,4,6,7],[5,8]] => 5
[[1,2,3,4,5,7],[6,8]] => 4
[[1,2,3,4,5,6],[7,8]] => 2
[[1,4,5,6,7,8],[2],[3]] => 8
[[1,3,5,6,7,8],[2],[4]] => 13
[[1,2,5,6,7,8],[3],[4]] => 7
[[1,3,4,6,7,8],[2],[5]] => 12
[[1,2,4,6,7,8],[3],[5]] => 11
[[1,2,3,6,7,8],[4],[5]] => 6
[[1,3,4,5,7,8],[2],[6]] => 11
[[1,2,4,5,7,8],[3],[6]] => 10
[[1,2,3,5,7,8],[4],[6]] => 9
[[1,2,3,4,7,8],[5],[6]] => 5
[[1,3,4,5,6,8],[2],[7]] => 10
[[1,2,4,5,6,8],[3],[7]] => 9
[[1,2,3,5,6,8],[4],[7]] => 8
[[1,2,3,4,6,8],[5],[7]] => 7
[[1,2,3,4,5,8],[6],[7]] => 4
[[1,3,4,5,6,7],[2],[8]] => 9
[[1,2,4,5,6,7],[3],[8]] => 8
[[1,2,3,5,6,7],[4],[8]] => 7
[[1,2,3,4,6,7],[5],[8]] => 6
[[1,2,3,4,5,7],[6],[8]] => 5
[[1,2,3,4,5,6],[7],[8]] => 3
[[1,3,5,7,8],[2,4,6]] => 15
[[1,2,5,7,8],[3,4,6]] => 9
[[1,3,4,7,8],[2,5,6]] => 11
[[1,2,4,7,8],[3,5,6]] => 10
[[1,2,3,7,8],[4,5,6]] => 5
[[1,3,5,6,8],[2,4,7]] => 14
[[1,2,5,6,8],[3,4,7]] => 8
[[1,3,4,6,8],[2,5,7]] => 13
[[1,2,4,6,8],[3,5,7]] => 12
[[1,2,3,6,8],[4,5,7]] => 7
[[1,3,4,5,8],[2,6,7]] => 10
[[1,2,4,5,8],[3,6,7]] => 9
[[1,2,3,5,8],[4,6,7]] => 8
[[1,2,3,4,8],[5,6,7]] => 4
[[1,3,5,6,7],[2,4,8]] => 13
[[1,2,5,6,7],[3,4,8]] => 7
[[1,3,4,6,7],[2,5,8]] => 12
[[1,2,4,6,7],[3,5,8]] => 11
[[1,2,3,6,7],[4,5,8]] => 6
[[1,3,4,5,7],[2,6,8]] => 11
[[1,2,4,5,7],[3,6,8]] => 10
[[1,2,3,5,7],[4,6,8]] => 9
[[1,2,3,4,7],[5,6,8]] => 5
[[1,3,4,5,6],[2,7,8]] => 9
[[1,2,4,5,6],[3,7,8]] => 8
[[1,2,3,5,6],[4,7,8]] => 7
[[1,2,3,4,6],[5,7,8]] => 6
[[1,2,3,4,5],[6,7,8]] => 3
[[1,4,6,7,8],[2,5],[3]] => 12
[[1,3,6,7,8],[2,5],[4]] => 17
[[1,2,6,7,8],[3,5],[4]] => 11
[[1,3,6,7,8],[2,4],[5]] => 13
[[1,2,6,7,8],[3,4],[5]] => 7
[[1,4,5,7,8],[2,6],[3]] => 11
[[1,3,5,7,8],[2,6],[4]] => 16
[[1,2,5,7,8],[3,6],[4]] => 10
[[1,3,4,7,8],[2,6],[5]] => 15
[[1,2,4,7,8],[3,6],[5]] => 14
[[1,2,3,7,8],[4,6],[5]] => 9
[[1,3,5,7,8],[2,4],[6]] => 16
[[1,2,5,7,8],[3,4],[6]] => 10
[[1,3,4,7,8],[2,5],[6]] => 12
[[1,2,4,7,8],[3,5],[6]] => 11
[[1,2,3,7,8],[4,5],[6]] => 6
[[1,4,5,6,8],[2,7],[3]] => 10
[[1,3,5,6,8],[2,7],[4]] => 15
[[1,2,5,6,8],[3,7],[4]] => 9
[[1,3,4,6,8],[2,7],[5]] => 14
[[1,2,4,6,8],[3,7],[5]] => 13
[[1,2,3,6,8],[4,7],[5]] => 8
[[1,3,4,5,8],[2,7],[6]] => 13
[[1,2,4,5,8],[3,7],[6]] => 12
[[1,2,3,5,8],[4,7],[6]] => 11
[[1,2,3,4,8],[5,7],[6]] => 7
[[1,3,5,6,8],[2,4],[7]] => 15
[[1,2,5,6,8],[3,4],[7]] => 9
[[1,3,4,6,8],[2,5],[7]] => 14
[[1,2,4,6,8],[3,5],[7]] => 13
[[1,2,3,6,8],[4,5],[7]] => 8
[[1,3,4,5,8],[2,6],[7]] => 11
[[1,2,4,5,8],[3,6],[7]] => 10
[[1,2,3,5,8],[4,6],[7]] => 9
[[1,2,3,4,8],[5,6],[7]] => 5
[[1,4,5,6,7],[2,8],[3]] => 9
[[1,3,5,6,7],[2,8],[4]] => 14
[[1,2,5,6,7],[3,8],[4]] => 8
[[1,3,4,6,7],[2,8],[5]] => 13
[[1,2,4,6,7],[3,8],[5]] => 12
[[1,2,3,6,7],[4,8],[5]] => 7
[[1,3,4,5,7],[2,8],[6]] => 12
[[1,2,4,5,7],[3,8],[6]] => 11
[[1,2,3,5,7],[4,8],[6]] => 10
[[1,2,3,4,7],[5,8],[6]] => 6
[[1,3,4,5,6],[2,8],[7]] => 11
[[1,2,4,5,6],[3,8],[7]] => 10
[[1,2,3,5,6],[4,8],[7]] => 9
[[1,2,3,4,6],[5,8],[7]] => 8
[[1,2,3,4,5],[6,8],[7]] => 5
[[1,3,5,6,7],[2,4],[8]] => 14
[[1,2,5,6,7],[3,4],[8]] => 8
[[1,3,4,6,7],[2,5],[8]] => 13
[[1,2,4,6,7],[3,5],[8]] => 12
[[1,2,3,6,7],[4,5],[8]] => 7
[[1,3,4,5,7],[2,6],[8]] => 12
[[1,2,4,5,7],[3,6],[8]] => 11
[[1,2,3,5,7],[4,6],[8]] => 10
[[1,2,3,4,7],[5,6],[8]] => 6
[[1,3,4,5,6],[2,7],[8]] => 10
[[1,2,4,5,6],[3,7],[8]] => 9
[[1,2,3,5,6],[4,7],[8]] => 8
[[1,2,3,4,6],[5,7],[8]] => 7
[[1,2,3,4,5],[6,7],[8]] => 4
[[1,5,6,7,8],[2],[3],[4]] => 10
[[1,4,6,7,8],[2],[3],[5]] => 14
[[1,3,6,7,8],[2],[4],[5]] => 15
[[1,2,6,7,8],[3],[4],[5]] => 9
[[1,4,5,7,8],[2],[3],[6]] => 13
[[1,3,5,7,8],[2],[4],[6]] => 18
[[1,2,5,7,8],[3],[4],[6]] => 12
[[1,3,4,7,8],[2],[5],[6]] => 14
[[1,2,4,7,8],[3],[5],[6]] => 13
[[1,2,3,7,8],[4],[5],[6]] => 8
[[1,4,5,6,8],[2],[3],[7]] => 12
[[1,3,5,6,8],[2],[4],[7]] => 17
[[1,2,5,6,8],[3],[4],[7]] => 11
[[1,3,4,6,8],[2],[5],[7]] => 16
[[1,2,4,6,8],[3],[5],[7]] => 15
[[1,2,3,6,8],[4],[5],[7]] => 10
[[1,3,4,5,8],[2],[6],[7]] => 13
[[1,2,4,5,8],[3],[6],[7]] => 12
[[1,2,3,5,8],[4],[6],[7]] => 11
[[1,2,3,4,8],[5],[6],[7]] => 7
[[1,4,5,6,7],[2],[3],[8]] => 11
[[1,3,5,6,7],[2],[4],[8]] => 16
[[1,2,5,6,7],[3],[4],[8]] => 10
[[1,3,4,6,7],[2],[5],[8]] => 15
[[1,2,4,6,7],[3],[5],[8]] => 14
[[1,2,3,6,7],[4],[5],[8]] => 9
[[1,3,4,5,7],[2],[6],[8]] => 14
[[1,2,4,5,7],[3],[6],[8]] => 13
[[1,2,3,5,7],[4],[6],[8]] => 12
[[1,2,3,4,7],[5],[6],[8]] => 8
[[1,3,4,5,6],[2],[7],[8]] => 12
[[1,2,4,5,6],[3],[7],[8]] => 11
[[1,2,3,5,6],[4],[7],[8]] => 10
[[1,2,3,4,6],[5],[7],[8]] => 9
[[1,2,3,4,5],[6],[7],[8]] => 6
[[1,3,5,7],[2,4,6,8]] => 16
[[1,2,5,7],[3,4,6,8]] => 10
[[1,3,4,7],[2,5,6,8]] => 12
[[1,2,4,7],[3,5,6,8]] => 11
[[1,2,3,7],[4,5,6,8]] => 6
[[1,3,5,6],[2,4,7,8]] => 14
[[1,2,5,6],[3,4,7,8]] => 8
[[1,3,4,6],[2,5,7,8]] => 13
[[1,2,4,6],[3,5,7,8]] => 12
[[1,2,3,6],[4,5,7,8]] => 7
[[1,3,4,5],[2,6,7,8]] => 10
[[1,2,4,5],[3,6,7,8]] => 9
[[1,2,3,5],[4,6,7,8]] => 8
[[1,2,3,4],[5,6,7,8]] => 4
[[1,4,6,8],[2,5,7],[3]] => 14
[[1,3,6,8],[2,5,7],[4]] => 19
[[1,2,6,8],[3,5,7],[4]] => 13
[[1,3,6,8],[2,4,7],[5]] => 15
[[1,2,6,8],[3,4,7],[5]] => 9
[[1,4,5,8],[2,6,7],[3]] => 11
[[1,3,5,8],[2,6,7],[4]] => 16
[[1,2,5,8],[3,6,7],[4]] => 10
[[1,3,4,8],[2,6,7],[5]] => 15
[[1,2,4,8],[3,6,7],[5]] => 14
[[1,2,3,8],[4,6,7],[5]] => 9
[[1,3,5,8],[2,4,7],[6]] => 18
[[1,2,5,8],[3,4,7],[6]] => 12
[[1,3,4,8],[2,5,7],[6]] => 14
[[1,2,4,8],[3,5,7],[6]] => 13
[[1,2,3,8],[4,5,7],[6]] => 8
[[1,3,5,8],[2,4,6],[7]] => 16
[[1,2,5,8],[3,4,6],[7]] => 10
[[1,3,4,8],[2,5,6],[7]] => 12
[[1,2,4,8],[3,5,6],[7]] => 11
[[1,2,3,8],[4,5,6],[7]] => 6
[[1,4,6,7],[2,5,8],[3]] => 13
[[1,3,6,7],[2,5,8],[4]] => 18
[[1,2,6,7],[3,5,8],[4]] => 12
[[1,3,6,7],[2,4,8],[5]] => 14
[[1,2,6,7],[3,4,8],[5]] => 8
[[1,4,5,7],[2,6,8],[3]] => 12
[[1,3,5,7],[2,6,8],[4]] => 17
[[1,2,5,7],[3,6,8],[4]] => 11
[[1,3,4,7],[2,6,8],[5]] => 16
[[1,2,4,7],[3,6,8],[5]] => 15
[[1,2,3,7],[4,6,8],[5]] => 10
[[1,3,5,7],[2,4,8],[6]] => 17
[[1,2,5,7],[3,4,8],[6]] => 11
[[1,3,4,7],[2,5,8],[6]] => 13
[[1,2,4,7],[3,5,8],[6]] => 12
[[1,2,3,7],[4,5,8],[6]] => 7
[[1,4,5,6],[2,7,8],[3]] => 10
[[1,3,5,6],[2,7,8],[4]] => 15
[[1,2,5,6],[3,7,8],[4]] => 9
[[1,3,4,6],[2,7,8],[5]] => 14
[[1,2,4,6],[3,7,8],[5]] => 13
[[1,2,3,6],[4,7,8],[5]] => 8
[[1,3,4,5],[2,7,8],[6]] => 13
[[1,2,4,5],[3,7,8],[6]] => 12
[[1,2,3,5],[4,7,8],[6]] => 11
[[1,2,3,4],[5,7,8],[6]] => 7
[[1,3,5,6],[2,4,8],[7]] => 16
[[1,2,5,6],[3,4,8],[7]] => 10
[[1,3,4,6],[2,5,8],[7]] => 15
[[1,2,4,6],[3,5,8],[7]] => 14
[[1,2,3,6],[4,5,8],[7]] => 9
[[1,3,4,5],[2,6,8],[7]] => 12
[[1,2,4,5],[3,6,8],[7]] => 11
[[1,2,3,5],[4,6,8],[7]] => 10
[[1,2,3,4],[5,6,8],[7]] => 6
[[1,3,5,7],[2,4,6],[8]] => 17
[[1,2,5,7],[3,4,6],[8]] => 11
[[1,3,4,7],[2,5,6],[8]] => 13
[[1,2,4,7],[3,5,6],[8]] => 12
[[1,2,3,7],[4,5,6],[8]] => 7
[[1,3,5,6],[2,4,7],[8]] => 15
[[1,2,5,6],[3,4,7],[8]] => 9
[[1,3,4,6],[2,5,7],[8]] => 14
[[1,2,4,6],[3,5,7],[8]] => 13
[[1,2,3,6],[4,5,7],[8]] => 8
[[1,3,4,5],[2,6,7],[8]] => 11
[[1,2,4,5],[3,6,7],[8]] => 10
[[1,2,3,5],[4,6,7],[8]] => 9
[[1,2,3,4],[5,6,7],[8]] => 5
[[1,4,7,8],[2,5],[3,6]] => 13
[[1,3,7,8],[2,5],[4,6]] => 18
[[1,2,7,8],[3,5],[4,6]] => 12
[[1,3,7,8],[2,4],[5,6]] => 14
[[1,2,7,8],[3,4],[5,6]] => 8
[[1,4,6,8],[2,5],[3,7]] => 15
[[1,3,6,8],[2,5],[4,7]] => 20
[[1,2,6,8],[3,5],[4,7]] => 14
[[1,3,6,8],[2,4],[5,7]] => 16
[[1,2,6,8],[3,4],[5,7]] => 10
[[1,4,5,8],[2,6],[3,7]] => 12
[[1,3,5,8],[2,6],[4,7]] => 17
[[1,2,5,8],[3,6],[4,7]] => 11
[[1,3,4,8],[2,6],[5,7]] => 16
[[1,2,4,8],[3,6],[5,7]] => 15
[[1,2,3,8],[4,6],[5,7]] => 10
[[1,3,5,8],[2,4],[6,7]] => 17
[[1,2,5,8],[3,4],[6,7]] => 11
[[1,3,4,8],[2,5],[6,7]] => 13
[[1,2,4,8],[3,5],[6,7]] => 12
[[1,2,3,8],[4,5],[6,7]] => 7
[[1,4,6,7],[2,5],[3,8]] => 14
[[1,3,6,7],[2,5],[4,8]] => 19
[[1,2,6,7],[3,5],[4,8]] => 13
[[1,3,6,7],[2,4],[5,8]] => 15
[[1,2,6,7],[3,4],[5,8]] => 9
[[1,4,5,7],[2,6],[3,8]] => 13
[[1,3,5,7],[2,6],[4,8]] => 18
[[1,2,5,7],[3,6],[4,8]] => 12
[[1,3,4,7],[2,6],[5,8]] => 17
[[1,2,4,7],[3,6],[5,8]] => 16
[[1,2,3,7],[4,6],[5,8]] => 11
[[1,3,5,7],[2,4],[6,8]] => 18
[[1,2,5,7],[3,4],[6,8]] => 12
[[1,3,4,7],[2,5],[6,8]] => 14
[[1,2,4,7],[3,5],[6,8]] => 13
[[1,2,3,7],[4,5],[6,8]] => 8
[[1,4,5,6],[2,7],[3,8]] => 11
[[1,3,5,6],[2,7],[4,8]] => 16
[[1,2,5,6],[3,7],[4,8]] => 10
[[1,3,4,6],[2,7],[5,8]] => 15
[[1,2,4,6],[3,7],[5,8]] => 14
[[1,2,3,6],[4,7],[5,8]] => 9
[[1,3,4,5],[2,7],[6,8]] => 14
[[1,2,4,5],[3,7],[6,8]] => 13
[[1,2,3,5],[4,7],[6,8]] => 12
[[1,2,3,4],[5,7],[6,8]] => 8
[[1,3,5,6],[2,4],[7,8]] => 16
[[1,2,5,6],[3,4],[7,8]] => 10
[[1,3,4,6],[2,5],[7,8]] => 15
[[1,2,4,6],[3,5],[7,8]] => 14
[[1,2,3,6],[4,5],[7,8]] => 9
[[1,3,4,5],[2,6],[7,8]] => 12
[[1,2,4,5],[3,6],[7,8]] => 11
[[1,2,3,5],[4,6],[7,8]] => 10
[[1,2,3,4],[5,6],[7,8]] => 6
[[1,5,7,8],[2,6],[3],[4]] => 13
[[1,4,7,8],[2,6],[3],[5]] => 17
[[1,3,7,8],[2,6],[4],[5]] => 18
[[1,2,7,8],[3,6],[4],[5]] => 12
[[1,4,7,8],[2,5],[3],[6]] => 14
[[1,3,7,8],[2,5],[4],[6]] => 19
[[1,2,7,8],[3,5],[4],[6]] => 13
[[1,3,7,8],[2,4],[5],[6]] => 15
[[1,2,7,8],[3,4],[5],[6]] => 9
[[1,5,6,8],[2,7],[3],[4]] => 12
[[1,4,6,8],[2,7],[3],[5]] => 16
[[1,3,6,8],[2,7],[4],[5]] => 17
[[1,2,6,8],[3,7],[4],[5]] => 11
[[1,4,5,8],[2,7],[3],[6]] => 15
[[1,3,5,8],[2,7],[4],[6]] => 20
[[1,2,5,8],[3,7],[4],[6]] => 14
[[1,3,4,8],[2,7],[5],[6]] => 16
[[1,2,4,8],[3,7],[5],[6]] => 15
[[1,2,3,8],[4,7],[5],[6]] => 10
[[1,4,6,8],[2,5],[3],[7]] => 16
[[1,3,6,8],[2,5],[4],[7]] => 21
[[1,2,6,8],[3,5],[4],[7]] => 15
[[1,3,6,8],[2,4],[5],[7]] => 17
[[1,2,6,8],[3,4],[5],[7]] => 11
[[1,4,5,8],[2,6],[3],[7]] => 13
[[1,3,5,8],[2,6],[4],[7]] => 18
[[1,2,5,8],[3,6],[4],[7]] => 12
[[1,3,4,8],[2,6],[5],[7]] => 17
[[1,2,4,8],[3,6],[5],[7]] => 16
[[1,2,3,8],[4,6],[5],[7]] => 11
[[1,3,5,8],[2,4],[6],[7]] => 18
[[1,2,5,8],[3,4],[6],[7]] => 12
[[1,3,4,8],[2,5],[6],[7]] => 14
[[1,2,4,8],[3,5],[6],[7]] => 13
[[1,2,3,8],[4,5],[6],[7]] => 8
[[1,5,6,7],[2,8],[3],[4]] => 11
[[1,4,6,7],[2,8],[3],[5]] => 15
[[1,3,6,7],[2,8],[4],[5]] => 16
[[1,2,6,7],[3,8],[4],[5]] => 10
[[1,4,5,7],[2,8],[3],[6]] => 14
[[1,3,5,7],[2,8],[4],[6]] => 19
[[1,2,5,7],[3,8],[4],[6]] => 13
[[1,3,4,7],[2,8],[5],[6]] => 15
[[1,2,4,7],[3,8],[5],[6]] => 14
[[1,2,3,7],[4,8],[5],[6]] => 9
[[1,4,5,6],[2,8],[3],[7]] => 13
[[1,3,5,6],[2,8],[4],[7]] => 18
[[1,2,5,6],[3,8],[4],[7]] => 12
[[1,3,4,6],[2,8],[5],[7]] => 17
[[1,2,4,6],[3,8],[5],[7]] => 16
[[1,2,3,6],[4,8],[5],[7]] => 11
[[1,3,4,5],[2,8],[6],[7]] => 14
[[1,2,4,5],[3,8],[6],[7]] => 13
[[1,2,3,5],[4,8],[6],[7]] => 12
[[1,2,3,4],[5,8],[6],[7]] => 8
[[1,4,6,7],[2,5],[3],[8]] => 15
[[1,3,6,7],[2,5],[4],[8]] => 20
[[1,2,6,7],[3,5],[4],[8]] => 14
[[1,3,6,7],[2,4],[5],[8]] => 16
[[1,2,6,7],[3,4],[5],[8]] => 10
[[1,4,5,7],[2,6],[3],[8]] => 14
[[1,3,5,7],[2,6],[4],[8]] => 19
[[1,2,5,7],[3,6],[4],[8]] => 13
[[1,3,4,7],[2,6],[5],[8]] => 18
[[1,2,4,7],[3,6],[5],[8]] => 17
[[1,2,3,7],[4,6],[5],[8]] => 12
[[1,3,5,7],[2,4],[6],[8]] => 19
[[1,2,5,7],[3,4],[6],[8]] => 13
[[1,3,4,7],[2,5],[6],[8]] => 15
[[1,2,4,7],[3,5],[6],[8]] => 14
[[1,2,3,7],[4,5],[6],[8]] => 9
[[1,4,5,6],[2,7],[3],[8]] => 12
[[1,3,5,6],[2,7],[4],[8]] => 17
[[1,2,5,6],[3,7],[4],[8]] => 11
[[1,3,4,6],[2,7],[5],[8]] => 16
[[1,2,4,6],[3,7],[5],[8]] => 15
[[1,2,3,6],[4,7],[5],[8]] => 10
[[1,3,4,5],[2,7],[6],[8]] => 15
[[1,2,4,5],[3,7],[6],[8]] => 14
[[1,2,3,5],[4,7],[6],[8]] => 13
[[1,2,3,4],[5,7],[6],[8]] => 9
[[1,3,5,6],[2,4],[7],[8]] => 17
[[1,2,5,6],[3,4],[7],[8]] => 11
[[1,3,4,6],[2,5],[7],[8]] => 16
[[1,2,4,6],[3,5],[7],[8]] => 15
[[1,2,3,6],[4,5],[7],[8]] => 10
[[1,3,4,5],[2,6],[7],[8]] => 13
[[1,2,4,5],[3,6],[7],[8]] => 12
[[1,2,3,5],[4,6],[7],[8]] => 11
[[1,2,3,4],[5,6],[7],[8]] => 7
[[1,6,7,8],[2],[3],[4],[5]] => 13
[[1,5,7,8],[2],[3],[4],[6]] => 16
[[1,4,7,8],[2],[3],[5],[6]] => 17
[[1,3,7,8],[2],[4],[5],[6]] => 18
[[1,2,7,8],[3],[4],[5],[6]] => 12
[[1,5,6,8],[2],[3],[4],[7]] => 15
[[1,4,6,8],[2],[3],[5],[7]] => 19
[[1,3,6,8],[2],[4],[5],[7]] => 20
[[1,2,6,8],[3],[4],[5],[7]] => 14
[[1,4,5,8],[2],[3],[6],[7]] => 16
[[1,3,5,8],[2],[4],[6],[7]] => 21
[[1,2,5,8],[3],[4],[6],[7]] => 15
[[1,3,4,8],[2],[5],[6],[7]] => 17
[[1,2,4,8],[3],[5],[6],[7]] => 16
[[1,2,3,8],[4],[5],[6],[7]] => 11
[[1,5,6,7],[2],[3],[4],[8]] => 14
[[1,4,6,7],[2],[3],[5],[8]] => 18
[[1,3,6,7],[2],[4],[5],[8]] => 19
[[1,2,6,7],[3],[4],[5],[8]] => 13
[[1,4,5,7],[2],[3],[6],[8]] => 17
[[1,3,5,7],[2],[4],[6],[8]] => 22
[[1,2,5,7],[3],[4],[6],[8]] => 16
[[1,3,4,7],[2],[5],[6],[8]] => 18
[[1,2,4,7],[3],[5],[6],[8]] => 17
[[1,2,3,7],[4],[5],[6],[8]] => 12
[[1,4,5,6],[2],[3],[7],[8]] => 15
[[1,3,5,6],[2],[4],[7],[8]] => 20
[[1,2,5,6],[3],[4],[7],[8]] => 14
[[1,3,4,6],[2],[5],[7],[8]] => 19
[[1,2,4,6],[3],[5],[7],[8]] => 18
[[1,2,3,6],[4],[5],[7],[8]] => 13
[[1,3,4,5],[2],[6],[7],[8]] => 16
[[1,2,4,5],[3],[6],[7],[8]] => 15
[[1,2,3,5],[4],[6],[7],[8]] => 14
[[1,2,3,4],[5],[6],[7],[8]] => 10
[[1,4,7],[2,5,8],[3,6]] => 14
[[1,3,7],[2,5,8],[4,6]] => 19
[[1,2,7],[3,5,8],[4,6]] => 13
[[1,3,7],[2,4,8],[5,6]] => 15
[[1,2,7],[3,4,8],[5,6]] => 9
[[1,4,6],[2,5,8],[3,7]] => 16
[[1,3,6],[2,5,8],[4,7]] => 21
[[1,2,6],[3,5,8],[4,7]] => 15
[[1,3,6],[2,4,8],[5,7]] => 17
[[1,2,6],[3,4,8],[5,7]] => 11
[[1,4,5],[2,6,8],[3,7]] => 13
[[1,3,5],[2,6,8],[4,7]] => 18
[[1,2,5],[3,6,8],[4,7]] => 12
[[1,3,4],[2,6,8],[5,7]] => 17
[[1,2,4],[3,6,8],[5,7]] => 16
[[1,2,3],[4,6,8],[5,7]] => 11
[[1,3,5],[2,4,8],[6,7]] => 18
[[1,2,5],[3,4,8],[6,7]] => 12
[[1,3,4],[2,5,8],[6,7]] => 14
[[1,2,4],[3,5,8],[6,7]] => 13
[[1,2,3],[4,5,8],[6,7]] => 8
[[1,4,6],[2,5,7],[3,8]] => 15
[[1,3,6],[2,5,7],[4,8]] => 20
[[1,2,6],[3,5,7],[4,8]] => 14
[[1,3,6],[2,4,7],[5,8]] => 16
[[1,2,6],[3,4,7],[5,8]] => 10
[[1,4,5],[2,6,7],[3,8]] => 12
[[1,3,5],[2,6,7],[4,8]] => 17
[[1,2,5],[3,6,7],[4,8]] => 11
[[1,3,4],[2,6,7],[5,8]] => 16
[[1,2,4],[3,6,7],[5,8]] => 15
[[1,2,3],[4,6,7],[5,8]] => 10
[[1,3,5],[2,4,7],[6,8]] => 19
[[1,2,5],[3,4,7],[6,8]] => 13
[[1,3,4],[2,5,7],[6,8]] => 15
[[1,2,4],[3,5,7],[6,8]] => 14
[[1,2,3],[4,5,7],[6,8]] => 9
[[1,3,5],[2,4,6],[7,8]] => 17
[[1,2,5],[3,4,6],[7,8]] => 11
[[1,3,4],[2,5,6],[7,8]] => 13
[[1,2,4],[3,5,6],[7,8]] => 12
[[1,2,3],[4,5,6],[7,8]] => 7
[[1,5,7],[2,6,8],[3],[4]] => 14
[[1,4,7],[2,6,8],[3],[5]] => 18
[[1,3,7],[2,6,8],[4],[5]] => 19
[[1,2,7],[3,6,8],[4],[5]] => 13
[[1,4,7],[2,5,8],[3],[6]] => 15
[[1,3,7],[2,5,8],[4],[6]] => 20
[[1,2,7],[3,5,8],[4],[6]] => 14
[[1,3,7],[2,4,8],[5],[6]] => 16
[[1,2,7],[3,4,8],[5],[6]] => 10
[[1,5,6],[2,7,8],[3],[4]] => 12
[[1,4,6],[2,7,8],[3],[5]] => 16
[[1,3,6],[2,7,8],[4],[5]] => 17
[[1,2,6],[3,7,8],[4],[5]] => 11
[[1,4,5],[2,7,8],[3],[6]] => 15
[[1,3,5],[2,7,8],[4],[6]] => 20
[[1,2,5],[3,7,8],[4],[6]] => 14
[[1,3,4],[2,7,8],[5],[6]] => 16
[[1,2,4],[3,7,8],[5],[6]] => 15
[[1,2,3],[4,7,8],[5],[6]] => 10
[[1,4,6],[2,5,8],[3],[7]] => 17
[[1,3,6],[2,5,8],[4],[7]] => 22
[[1,2,6],[3,5,8],[4],[7]] => 16
[[1,3,6],[2,4,8],[5],[7]] => 18
[[1,2,6],[3,4,8],[5],[7]] => 12
[[1,4,5],[2,6,8],[3],[7]] => 14
[[1,3,5],[2,6,8],[4],[7]] => 19
[[1,2,5],[3,6,8],[4],[7]] => 13
[[1,3,4],[2,6,8],[5],[7]] => 18
[[1,2,4],[3,6,8],[5],[7]] => 17
[[1,2,3],[4,6,8],[5],[7]] => 12
[[1,3,5],[2,4,8],[6],[7]] => 19
[[1,2,5],[3,4,8],[6],[7]] => 13
[[1,3,4],[2,5,8],[6],[7]] => 15
[[1,2,4],[3,5,8],[6],[7]] => 14
[[1,2,3],[4,5,8],[6],[7]] => 9
[[1,4,6],[2,5,7],[3],[8]] => 16
[[1,3,6],[2,5,7],[4],[8]] => 21
[[1,2,6],[3,5,7],[4],[8]] => 15
[[1,3,6],[2,4,7],[5],[8]] => 17
[[1,2,6],[3,4,7],[5],[8]] => 11
[[1,4,5],[2,6,7],[3],[8]] => 13
[[1,3,5],[2,6,7],[4],[8]] => 18
[[1,2,5],[3,6,7],[4],[8]] => 12
[[1,3,4],[2,6,7],[5],[8]] => 17
[[1,2,4],[3,6,7],[5],[8]] => 16
[[1,2,3],[4,6,7],[5],[8]] => 11
[[1,3,5],[2,4,7],[6],[8]] => 20
[[1,2,5],[3,4,7],[6],[8]] => 14
[[1,3,4],[2,5,7],[6],[8]] => 16
[[1,2,4],[3,5,7],[6],[8]] => 15
[[1,2,3],[4,5,7],[6],[8]] => 10
[[1,3,5],[2,4,6],[7],[8]] => 18
[[1,2,5],[3,4,6],[7],[8]] => 12
[[1,3,4],[2,5,6],[7],[8]] => 14
[[1,2,4],[3,5,6],[7],[8]] => 13
[[1,2,3],[4,5,6],[7],[8]] => 8
[[1,5,8],[2,6],[3,7],[4]] => 14
[[1,4,8],[2,6],[3,7],[5]] => 18
[[1,3,8],[2,6],[4,7],[5]] => 19
[[1,2,8],[3,6],[4,7],[5]] => 13
[[1,4,8],[2,5],[3,7],[6]] => 17
[[1,3,8],[2,5],[4,7],[6]] => 22
[[1,2,8],[3,5],[4,7],[6]] => 16
[[1,3,8],[2,4],[5,7],[6]] => 18
[[1,2,8],[3,4],[5,7],[6]] => 12
[[1,4,8],[2,5],[3,6],[7]] => 15
[[1,3,8],[2,5],[4,6],[7]] => 20
[[1,2,8],[3,5],[4,6],[7]] => 14
[[1,3,8],[2,4],[5,6],[7]] => 16
[[1,2,8],[3,4],[5,6],[7]] => 10
[[1,5,7],[2,6],[3,8],[4]] => 15
[[1,4,7],[2,6],[3,8],[5]] => 19
[[1,3,7],[2,6],[4,8],[5]] => 20
[[1,2,7],[3,6],[4,8],[5]] => 14
[[1,4,7],[2,5],[3,8],[6]] => 16
[[1,3,7],[2,5],[4,8],[6]] => 21
[[1,2,7],[3,5],[4,8],[6]] => 15
[[1,3,7],[2,4],[5,8],[6]] => 17
[[1,2,7],[3,4],[5,8],[6]] => 11
[[1,5,6],[2,7],[3,8],[4]] => 13
[[1,4,6],[2,7],[3,8],[5]] => 17
[[1,3,6],[2,7],[4,8],[5]] => 18
[[1,2,6],[3,7],[4,8],[5]] => 12
[[1,4,5],[2,7],[3,8],[6]] => 16
[[1,3,5],[2,7],[4,8],[6]] => 21
[[1,2,5],[3,7],[4,8],[6]] => 15
[[1,3,4],[2,7],[5,8],[6]] => 17
[[1,2,4],[3,7],[5,8],[6]] => 16
[[1,2,3],[4,7],[5,8],[6]] => 11
[[1,4,6],[2,5],[3,8],[7]] => 18
[[1,3,6],[2,5],[4,8],[7]] => 23
[[1,2,6],[3,5],[4,8],[7]] => 17
[[1,3,6],[2,4],[5,8],[7]] => 19
[[1,2,6],[3,4],[5,8],[7]] => 13
[[1,4,5],[2,6],[3,8],[7]] => 15
[[1,3,5],[2,6],[4,8],[7]] => 20
[[1,2,5],[3,6],[4,8],[7]] => 14
[[1,3,4],[2,6],[5,8],[7]] => 19
[[1,2,4],[3,6],[5,8],[7]] => 18
[[1,2,3],[4,6],[5,8],[7]] => 13
[[1,3,5],[2,4],[6,8],[7]] => 20
[[1,2,5],[3,4],[6,8],[7]] => 14
[[1,3,4],[2,5],[6,8],[7]] => 16
[[1,2,4],[3,5],[6,8],[7]] => 15
[[1,2,3],[4,5],[6,8],[7]] => 10
[[1,4,7],[2,5],[3,6],[8]] => 16
[[1,3,7],[2,5],[4,6],[8]] => 21
[[1,2,7],[3,5],[4,6],[8]] => 15
[[1,3,7],[2,4],[5,6],[8]] => 17
[[1,2,7],[3,4],[5,6],[8]] => 11
[[1,4,6],[2,5],[3,7],[8]] => 17
[[1,3,6],[2,5],[4,7],[8]] => 22
[[1,2,6],[3,5],[4,7],[8]] => 16
[[1,3,6],[2,4],[5,7],[8]] => 18
[[1,2,6],[3,4],[5,7],[8]] => 12
[[1,4,5],[2,6],[3,7],[8]] => 14
[[1,3,5],[2,6],[4,7],[8]] => 19
[[1,2,5],[3,6],[4,7],[8]] => 13
[[1,3,4],[2,6],[5,7],[8]] => 18
[[1,2,4],[3,6],[5,7],[8]] => 17
[[1,2,3],[4,6],[5,7],[8]] => 12
[[1,3,5],[2,4],[6,7],[8]] => 19
[[1,2,5],[3,4],[6,7],[8]] => 13
[[1,3,4],[2,5],[6,7],[8]] => 15
[[1,2,4],[3,5],[6,7],[8]] => 14
[[1,2,3],[4,5],[6,7],[8]] => 9
[[1,6,8],[2,7],[3],[4],[5]] => 15
[[1,5,8],[2,7],[3],[4],[6]] => 18
[[1,4,8],[2,7],[3],[5],[6]] => 19
[[1,3,8],[2,7],[4],[5],[6]] => 20
[[1,2,8],[3,7],[4],[5],[6]] => 14
[[1,5,8],[2,6],[3],[4],[7]] => 16
[[1,4,8],[2,6],[3],[5],[7]] => 20
[[1,3,8],[2,6],[4],[5],[7]] => 21
[[1,2,8],[3,6],[4],[5],[7]] => 15
[[1,4,8],[2,5],[3],[6],[7]] => 17
[[1,3,8],[2,5],[4],[6],[7]] => 22
[[1,2,8],[3,5],[4],[6],[7]] => 16
[[1,3,8],[2,4],[5],[6],[7]] => 18
[[1,2,8],[3,4],[5],[6],[7]] => 12
[[1,6,7],[2,8],[3],[4],[5]] => 14
[[1,5,7],[2,8],[3],[4],[6]] => 17
[[1,4,7],[2,8],[3],[5],[6]] => 18
[[1,3,7],[2,8],[4],[5],[6]] => 19
[[1,2,7],[3,8],[4],[5],[6]] => 13
[[1,5,6],[2,8],[3],[4],[7]] => 16
[[1,4,6],[2,8],[3],[5],[7]] => 20
[[1,3,6],[2,8],[4],[5],[7]] => 21
[[1,2,6],[3,8],[4],[5],[7]] => 15
[[1,4,5],[2,8],[3],[6],[7]] => 17
[[1,3,5],[2,8],[4],[6],[7]] => 22
[[1,2,5],[3,8],[4],[6],[7]] => 16
[[1,3,4],[2,8],[5],[6],[7]] => 18
[[1,2,4],[3,8],[5],[6],[7]] => 17
[[1,2,3],[4,8],[5],[6],[7]] => 12
[[1,5,7],[2,6],[3],[4],[8]] => 17
[[1,4,7],[2,6],[3],[5],[8]] => 21
[[1,3,7],[2,6],[4],[5],[8]] => 22
[[1,2,7],[3,6],[4],[5],[8]] => 16
[[1,4,7],[2,5],[3],[6],[8]] => 18
[[1,3,7],[2,5],[4],[6],[8]] => 23
[[1,2,7],[3,5],[4],[6],[8]] => 17
[[1,3,7],[2,4],[5],[6],[8]] => 19
[[1,2,7],[3,4],[5],[6],[8]] => 13
[[1,5,6],[2,7],[3],[4],[8]] => 15
[[1,4,6],[2,7],[3],[5],[8]] => 19
[[1,3,6],[2,7],[4],[5],[8]] => 20
[[1,2,6],[3,7],[4],[5],[8]] => 14
[[1,4,5],[2,7],[3],[6],[8]] => 18
[[1,3,5],[2,7],[4],[6],[8]] => 23
[[1,2,5],[3,7],[4],[6],[8]] => 17
[[1,3,4],[2,7],[5],[6],[8]] => 19
[[1,2,4],[3,7],[5],[6],[8]] => 18
[[1,2,3],[4,7],[5],[6],[8]] => 13
[[1,4,6],[2,5],[3],[7],[8]] => 19
[[1,3,6],[2,5],[4],[7],[8]] => 24
[[1,2,6],[3,5],[4],[7],[8]] => 18
[[1,3,6],[2,4],[5],[7],[8]] => 20
[[1,2,6],[3,4],[5],[7],[8]] => 14
[[1,4,5],[2,6],[3],[7],[8]] => 16
[[1,3,5],[2,6],[4],[7],[8]] => 21
[[1,2,5],[3,6],[4],[7],[8]] => 15
[[1,3,4],[2,6],[5],[7],[8]] => 20
[[1,2,4],[3,6],[5],[7],[8]] => 19
[[1,2,3],[4,6],[5],[7],[8]] => 14
[[1,3,5],[2,4],[6],[7],[8]] => 21
[[1,2,5],[3,4],[6],[7],[8]] => 15
[[1,3,4],[2,5],[6],[7],[8]] => 17
[[1,2,4],[3,5],[6],[7],[8]] => 16
[[1,2,3],[4,5],[6],[7],[8]] => 11
[[1,7,8],[2],[3],[4],[5],[6]] => 17
[[1,6,8],[2],[3],[4],[5],[7]] => 19
[[1,5,8],[2],[3],[4],[6],[7]] => 20
[[1,4,8],[2],[3],[5],[6],[7]] => 21
[[1,3,8],[2],[4],[5],[6],[7]] => 22
[[1,2,8],[3],[4],[5],[6],[7]] => 16
[[1,6,7],[2],[3],[4],[5],[8]] => 18
[[1,5,7],[2],[3],[4],[6],[8]] => 21
[[1,4,7],[2],[3],[5],[6],[8]] => 22
[[1,3,7],[2],[4],[5],[6],[8]] => 23
[[1,2,7],[3],[4],[5],[6],[8]] => 17
[[1,5,6],[2],[3],[4],[7],[8]] => 19
[[1,4,6],[2],[3],[5],[7],[8]] => 23
[[1,3,6],[2],[4],[5],[7],[8]] => 24
[[1,2,6],[3],[4],[5],[7],[8]] => 18
[[1,4,5],[2],[3],[6],[7],[8]] => 20
[[1,3,5],[2],[4],[6],[7],[8]] => 25
[[1,2,5],[3],[4],[6],[7],[8]] => 19
[[1,3,4],[2],[5],[6],[7],[8]] => 21
[[1,2,4],[3],[5],[6],[7],[8]] => 20
[[1,2,3],[4],[5],[6],[7],[8]] => 15
[[1,5],[2,6],[3,7],[4,8]] => 16
[[1,4],[2,6],[3,7],[5,8]] => 20
[[1,3],[2,6],[4,7],[5,8]] => 21
[[1,2],[3,6],[4,7],[5,8]] => 15
[[1,4],[2,5],[3,7],[6,8]] => 19
[[1,3],[2,5],[4,7],[6,8]] => 24
[[1,2],[3,5],[4,7],[6,8]] => 18
[[1,3],[2,4],[5,7],[6,8]] => 20
[[1,2],[3,4],[5,7],[6,8]] => 14
[[1,4],[2,5],[3,6],[7,8]] => 17
[[1,3],[2,5],[4,6],[7,8]] => 22
[[1,2],[3,5],[4,6],[7,8]] => 16
[[1,3],[2,4],[5,6],[7,8]] => 18
[[1,2],[3,4],[5,6],[7,8]] => 12
[[1,6],[2,7],[3,8],[4],[5]] => 16
[[1,5],[2,7],[3,8],[4],[6]] => 19
[[1,4],[2,7],[3,8],[5],[6]] => 20
[[1,3],[2,7],[4,8],[5],[6]] => 21
[[1,2],[3,7],[4,8],[5],[6]] => 15
[[1,5],[2,6],[3,8],[4],[7]] => 18
[[1,4],[2,6],[3,8],[5],[7]] => 22
[[1,3],[2,6],[4,8],[5],[7]] => 23
[[1,2],[3,6],[4,8],[5],[7]] => 17
[[1,4],[2,5],[3,8],[6],[7]] => 19
[[1,3],[2,5],[4,8],[6],[7]] => 24
[[1,2],[3,5],[4,8],[6],[7]] => 18
[[1,3],[2,4],[5,8],[6],[7]] => 20
[[1,2],[3,4],[5,8],[6],[7]] => 14
[[1,5],[2,6],[3,7],[4],[8]] => 17
[[1,4],[2,6],[3,7],[5],[8]] => 21
[[1,3],[2,6],[4,7],[5],[8]] => 22
[[1,2],[3,6],[4,7],[5],[8]] => 16
[[1,4],[2,5],[3,7],[6],[8]] => 20
[[1,3],[2,5],[4,7],[6],[8]] => 25
[[1,2],[3,5],[4,7],[6],[8]] => 19
[[1,3],[2,4],[5,7],[6],[8]] => 21
[[1,2],[3,4],[5,7],[6],[8]] => 15
[[1,4],[2,5],[3,6],[7],[8]] => 18
[[1,3],[2,5],[4,6],[7],[8]] => 23
[[1,2],[3,5],[4,6],[7],[8]] => 17
[[1,3],[2,4],[5,6],[7],[8]] => 19
[[1,2],[3,4],[5,6],[7],[8]] => 13
[[1,7],[2,8],[3],[4],[5],[6]] => 18
[[1,6],[2,8],[3],[4],[5],[7]] => 20
[[1,5],[2,8],[3],[4],[6],[7]] => 21
[[1,4],[2,8],[3],[5],[6],[7]] => 22
[[1,3],[2,8],[4],[5],[6],[7]] => 23
[[1,2],[3,8],[4],[5],[6],[7]] => 17
[[1,6],[2,7],[3],[4],[5],[8]] => 19
[[1,5],[2,7],[3],[4],[6],[8]] => 22
[[1,4],[2,7],[3],[5],[6],[8]] => 23
[[1,3],[2,7],[4],[5],[6],[8]] => 24
[[1,2],[3,7],[4],[5],[6],[8]] => 18
[[1,5],[2,6],[3],[4],[7],[8]] => 20
[[1,4],[2,6],[3],[5],[7],[8]] => 24
[[1,3],[2,6],[4],[5],[7],[8]] => 25
[[1,2],[3,6],[4],[5],[7],[8]] => 19
[[1,4],[2,5],[3],[6],[7],[8]] => 21
[[1,3],[2,5],[4],[6],[7],[8]] => 26
[[1,2],[3,5],[4],[6],[7],[8]] => 20
[[1,3],[2,4],[5],[6],[7],[8]] => 22
[[1,2],[3,4],[5],[6],[7],[8]] => 16
[[1,8],[2],[3],[4],[5],[6],[7]] => 22
[[1,7],[2],[3],[4],[5],[6],[8]] => 23
[[1,6],[2],[3],[4],[5],[7],[8]] => 24
[[1,5],[2],[3],[4],[6],[7],[8]] => 25
[[1,4],[2],[3],[5],[6],[7],[8]] => 26
[[1,3],[2],[4],[5],[6],[7],[8]] => 27
[[1,2],[3],[4],[5],[6],[7],[8]] => 21
[[1],[2],[3],[4],[5],[6],[7],[8]] => 28
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Generating function
click to show known generating functions
Search the OEIS for these generating functions
Search the Online Encyclopedia of Integer
Sequences for the coefficients of a few of the
first generating functions, in the case at hand:
1,1 1,1,1,1 1,1,2,2,2,1,1 1,1,2,3,4,4,4,3,2,1,1 1,1,2,4,5,7,9,9,9,9,7,5,4,2,1,1 1,1,2,4,6,9,13,16,19,22,23,23,22,19,16,13,9,6,4,2,1,1 1,1,2,4,7,10,16,22,30,37,46,52,60,62,64,62,60,52,46,37,30,22,16,10,7,4,2,1,1
F1=1
F2=1+q
F3=1+q+q2+q3
F4=1+q+2 q2+2 q3+2 q4+q5+q6
F5=1+q+2 q2+3 q3+4 q4+4 q5+4 q6+3 q7+2 q8+q9+q10
F6=1+q+2 q2+4 q3+5 q4+7 q5+9 q6+9 q7+9 q8+9 q9+7 q10+5 q11+4 q12+2 q13+q14+q15
F7=1+q+2 q2+4 q3+6 q4+9 q5+13 q6+16 q7+19 q8+22 q9+23 q10+23 q11+22 q12+19 q13+16 q14+13 q15+9 q16+6 q17+4 q18+2 q19+q20+q21
F8=1+q+2 q2+4 q3+7 q4+10 q5+16 q6+22 q7+30 q8+37 q9+46 q10+52 q11+60 q12+62 q13+64 q14+62 q15+60 q16+52 q17+46 q18+37 q19+30 q20+22 q21+16 q22+10 q23+7 q24+4 q25+2 q26+q27+q28
Description
The shifted natural comajor index of a standard Young tableau.
A natural descent of a standard tableau T is an entry i such that i+1 appears in a higher row than i in English notation.
The natural comajor index of a tableau of shape λ, size n with natural descent set D is then b(λ)+∑d∈Dn−d, where b(λ)=∑i(i−1)λi.
A natural descent of a standard tableau T is an entry i such that i+1 appears in a higher row than i in English notation.
The natural comajor index of a tableau of shape λ, size n with natural descent set D is then b(λ)+∑d∈Dn−d, where b(λ)=∑i(i−1)λi.
References
[1] Hopkins, S. Two majs for standard Young tableaux? MathOverflow:385374
Code
def natural_descents(T):
n = T.size()
D = []
for i in range(1, n):
for row in T:
if row.count(i):
break
if row.count(i+1):
D.append(i)
break
return D
def statistic(T):
n = T.size()
D = natural_descents(T)
return sum(n-d for d in D) + sum(i*p for i, p in enumerate(T.shape()))
Created
Mar 04, 2021 at 08:53 by Martin Rubey
Updated
Mar 15, 2021 at 15:39 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!