Values
=>
Cc0020;cc-rep
([],0)=>0
([],1)=>0
([],2)=>0
([(0,1)],2)=>0
([],3)=>0
([(1,2)],3)=>2
([(0,2),(1,2)],3)=>2
([(0,1),(0,2),(1,2)],3)=>0
([],4)=>0
([(2,3)],4)=>2
([(1,3),(2,3)],4)=>2
([(0,3),(1,3),(2,3)],4)=>2
([(0,3),(1,2)],4)=>2
([(0,3),(1,2),(2,3)],4)=>2
([(1,2),(1,3),(2,3)],4)=>2
([(0,3),(1,2),(1,3),(2,3)],4)=>2
([(0,2),(0,3),(1,2),(1,3)],4)=>2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>4
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>0
([],5)=>0
([(3,4)],5)=>2
([(2,4),(3,4)],5)=>2
([(1,4),(2,4),(3,4)],5)=>4
([(0,4),(1,4),(2,4),(3,4)],5)=>2
([(1,4),(2,3)],5)=>2
([(1,4),(2,3),(3,4)],5)=>2
([(0,1),(2,4),(3,4)],5)=>4
([(2,3),(2,4),(3,4)],5)=>4
([(0,4),(1,4),(2,3),(3,4)],5)=>4
([(1,4),(2,3),(2,4),(3,4)],5)=>4
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>4
([(1,3),(1,4),(2,3),(2,4)],5)=>2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>4
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>4
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>4
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>4
([(0,4),(1,3),(2,3),(2,4)],5)=>4
([(0,1),(2,3),(2,4),(3,4)],5)=>2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)=>3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>4
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The villainy of a graph.
The villainy of a permutation of a proper coloring $c$ of a graph is the minimal Hamming distance between $c$ and a proper coloring.
The villainy of a graph is the maximal villainy of a permutation of a proper coloring.
The villainy of a permutation of a proper coloring $c$ of a graph is the minimal Hamming distance between $c$ and a proper coloring.
The villainy of a graph is the maximal villainy of a permutation of a proper coloring.
References
[1] Jahanbekam, S., Lin, M.-R. Characterization of Graphs with Villainy 2 arXiv:2103.05816
Code
# extremely stupid code def is_proper_coloring(G, c): """ assume that G has vertices {0,...,n-1}. """ return not any(c[v] in [c[u] for u in G[v]] for v in G) def villainy_coloring(G, c): """ assume that G has vertices {0,...,n-1}. """ villainy = None for c_pi in Permutations(c): if is_proper_coloring(G, c_pi): d = sum(1 for c1, c2 in zip(c, c_pi) if c1 != c2) if villainy is None or d < villainy: villainy = d if villainy == 0: return villainy return villainy def statistic(G): G = G.relabel(inplace=False) n = G.num_verts() chi = G.chromatic_number() villainy = 0 for c in sage.graphs.graph_coloring.all_graph_colorings(G, chi, vertex_color_dict=True): c = [c[i] for i in range(n)] for c_pi in Permutations(c): d = villainy_coloring(G, c_pi) villainy = max(villainy, d) return villainy
Created
Mar 11, 2021 at 13:16 by Martin Rubey
Updated
Mar 11, 2021 at 13:16 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!