Identifier
Values
([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
([(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(1,2),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
>>> Load all 147 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph.
The deck of a graph is the multiset of induced subgraphs obtained by deleting a single vertex.
The graph reconstruction conjecture states that the deck of a graph with at least three vertices determines the graph.
This statistic is only defined for graphs with at least two vertices, because there is only a single graph of the given size otherwise.
The deck of a graph is the multiset of induced subgraphs obtained by deleting a single vertex.
The graph reconstruction conjecture states that the deck of a graph with at least three vertices determines the graph.
This statistic is only defined for graphs with at least two vertices, because there is only a single graph of the given size otherwise.
Map
delete endpoints
Description
Sends a graph to a maximal subgraph with no endpoints.
An endpoint of a graph is a vertex of degree one. Given an arbitrary graph, this map repeatedly searches for an endpoint and deletes it, until no endpoint remains. The result does not depend on the order of endpoints chosen, up to isomorphism. The map preserves the number of connected components. For a connected graph with at least one cycle, this map returns the 2-core.
An endpoint of a graph is a vertex of degree one. Given an arbitrary graph, this map repeatedly searches for an endpoint and deletes it, until no endpoint remains. The result does not depend on the order of endpoints chosen, up to isomorphism. The map preserves the number of connected components. For a connected graph with at least one cycle, this map returns the 2-core.
Map
core
Description
The core of a graph.
The core of a graph G is the smallest graph C such that there is a homomorphism from G to C and a homomorphism from C to G.
Note that the core of a graph is not necessarily connected, see [2].
The core of a graph G is the smallest graph C such that there is a homomorphism from G to C and a homomorphism from C to G.
Note that the core of a graph is not necessarily connected, see [2].
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!