Identifier
Values
([],1) => ([],0) => 1
([],2) => ([],0) => 1
([(0,1)],2) => ([],1) => 2
([],3) => ([],0) => 1
([(1,2)],3) => ([],1) => 2
([(0,2),(1,2)],3) => ([(0,1)],2) => 4
([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 5
([],4) => ([],0) => 1
([(2,3)],4) => ([],1) => 2
([(1,3),(2,3)],4) => ([(0,1)],2) => 4
([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => 5
([(0,3),(1,2)],4) => ([],2) => 4
([(0,3),(1,2),(2,3)],4) => ([(0,2),(1,2)],3) => 7
([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => 5
([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 6
([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => 10
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 7
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 8
([],5) => ([],0) => 1
([(3,4)],5) => ([],1) => 2
([(2,4),(3,4)],5) => ([(0,1)],2) => 4
([(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 5
([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 6
([(1,4),(2,3)],5) => ([],2) => 4
([(1,4),(2,3),(3,4)],5) => ([(0,2),(1,2)],3) => 7
([(0,1),(2,4),(3,4)],5) => ([(1,2)],3) => 8
([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 5
([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(1,3),(2,3)],4) => 8
([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 6
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 7
([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,2),(0,3),(1,2),(1,3)],4) => 10
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 11
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 7
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 7
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 8
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 13
([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,3),(1,2),(2,3)],4) => 12
([(0,1),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(2,3)],4) => 10
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 10
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 9
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 17
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 10
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 8
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 8
([],6) => ([],0) => 1
([(4,5)],6) => ([],1) => 2
([(3,5),(4,5)],6) => ([(0,1)],2) => 4
([(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 5
([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 6
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 7
([(2,5),(3,4)],6) => ([],2) => 4
([(2,5),(3,4),(4,5)],6) => ([(0,2),(1,2)],3) => 7
([(1,2),(3,5),(4,5)],6) => ([(1,2)],3) => 8
([(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 5
([(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => 8
([(0,1),(2,5),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => 10
([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 6
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 9
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 7
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 8
([(2,4),(2,5),(3,4),(3,5)],6) => ([(0,2),(0,3),(1,2),(1,3)],4) => 10
([(0,5),(1,5),(2,4),(3,4)],6) => ([(0,3),(1,2)],4) => 16
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 11
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 14
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 7
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 7
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 9
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 12
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 8
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 8
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 13
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => 13
([(0,5),(1,4),(2,3)],6) => ([],3) => 8
([(1,5),(2,4),(3,4),(3,5)],6) => ([(0,3),(1,2),(2,3)],4) => 12
([(0,1),(2,5),(3,4),(4,5)],6) => ([(1,3),(2,3)],4) => 14
([(1,2),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => 10
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 13
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 10
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 12
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 11
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 9
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 17
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 12
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 10
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 19
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 8
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 8
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 21
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,3),(1,4),(2,3),(2,4)],5) => 20
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => ([(0,1),(2,3),(2,4),(3,4)],5) => 20
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => 18
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => 18
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 12
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 14
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 12
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 8
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => 29
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => 25
([],7) => ([],0) => 1
([(5,6)],7) => ([],1) => 2
([(4,6),(5,6)],7) => ([(0,1)],2) => 4
>>> Load all 179 entries. <<<
([(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,2)],3) => 5
([(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 6
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 7
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 8
([(3,6),(4,5)],7) => ([],2) => 4
([(3,6),(4,5),(5,6)],7) => ([(0,2),(1,2)],3) => 7
([(2,3),(4,6),(5,6)],7) => ([(1,2)],3) => 8
([(4,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,2)],3) => 5
([(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(1,3),(2,3)],4) => 8
([(1,2),(3,6),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => 10
([(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 6
([(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 9
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 12
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 7
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 10
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 8
([(3,5),(3,6),(4,5),(4,6)],7) => ([(0,2),(0,3),(1,2),(1,3)],4) => 10
([(1,6),(2,6),(3,5),(4,5)],7) => ([(0,3),(1,2)],4) => 16
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 11
([(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 14
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => ([(0,1),(2,3),(2,4),(3,4)],5) => 20
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 7
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 7
([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 9
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 12
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 16
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 8
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 8
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 10
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 13
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => 13
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => 17
([(1,6),(2,5),(3,4)],7) => ([],3) => 8
([(2,6),(3,5),(4,5),(4,6)],7) => ([(0,3),(1,2),(2,3)],4) => 12
([(1,2),(3,6),(4,5),(5,6)],7) => ([(1,3),(2,3)],4) => 14
([(0,3),(1,2),(4,6),(5,6)],7) => ([(2,3)],4) => 16
([(2,3),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => 10
([(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 13
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => ([(1,4),(2,3),(2,4),(3,4)],5) => 16
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 10
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 12
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 14
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 11
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 14
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 9
([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 17
([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 12
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => 25
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 10
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 19
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 8
([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 8
([(1,6),(2,5),(3,4),(3,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 21
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,3),(1,4),(2,3),(2,4)],5) => 20
([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => ([(0,1),(2,4),(3,4)],5) => 28
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => ([(0,1),(2,3),(2,4),(3,4)],5) => 20
([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => 18
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => 23
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 22
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7) => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => 18
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 24
([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 12
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 14
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 15
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 14
([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 12
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => 25
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 8
([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7) => ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => 29
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => 40
([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => ([(1,4),(2,3),(3,4)],5) => 24
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => ([(2,3),(2,4),(3,4)],5) => 20
([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => 22
([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 20
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 37
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 34
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7) => ([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => 35
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => 25
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of closed sets in a graph.
A subset $S$ of the set of vertices is a closed set, if for any pair of distinct elements of $S$ the intersection of the corresponding neighbourhoods is a subset of $S$:
$$ \forall a, b\in S: N(a)\cap N(b) \subseteq S. $$
Map
line graph
Description
The line graph of a graph.
Let $G$ be a graph with edge set $E$. Then its line graph is the graph with vertex set $E$, such that two vertices $e$ and $f$ are adjacent if and only if they are incident to a common vertex in $G$.