edit this statistic or download as text // json
Identifier
Values
=>
Cc0002;cc-rep
[]=>1 [1]=>1 [2]=>2 [1,1]=>2 [3]=>1 [2,1]=>4 [1,1,1]=>4 [4]=>2 [3,1]=>1 [2,2]=>10 [2,1,1]=>10 [1,1,1,1]=>10 [5]=>1 [4,1]=>2 [3,2]=>2 [3,1,1]=>2 [2,2,1]=>26 [2,1,1,1]=>26 [1,1,1,1,1]=>26 [6]=>4 [5,1]=>1 [4,2]=>4 [4,1,1]=>4 [3,3]=>4 [3,2,1]=>4 [3,1,1,1]=>4 [2,2,2]=>76 [2,2,1,1]=>76 [2,1,1,1,1]=>76 [1,1,1,1,1,1]=>76 [7]=>1 [6,1]=>4 [5,2]=>2 [5,1,1]=>2 [4,3]=>2 [4,2,1]=>8 [4,1,1,1]=>8 [3,3,1]=>4 [3,2,2]=>10 [3,2,1,1]=>10 [3,1,1,1,1]=>10 [2,2,2,1]=>232 [2,2,1,1,1]=>232 [2,1,1,1,1,1]=>232 [1,1,1,1,1,1,1]=>232 [8]=>4 [7,1]=>1 [6,2]=>8 [6,1,1]=>8 [5,3]=>1 [5,2,1]=>4 [5,1,1,1]=>4 [4,4]=>12 [4,3,1]=>2 [4,2,2]=>20 [4,2,1,1]=>20 [4,1,1,1,1]=>20 [3,3,2]=>8 [3,3,1,1]=>8 [3,2,2,1]=>26 [3,2,1,1,1]=>26 [3,1,1,1,1,1]=>26 [2,2,2,2]=>764 [2,2,2,1,1]=>764 [2,2,1,1,1,1]=>764 [2,1,1,1,1,1,1]=>764 [1,1,1,1,1,1,1,1]=>764
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of permutations such that conjugation with a permutation of given cycle type yields the inverse permutation.
Let $\alpha$ be any permutation of cycle type $\lambda$. This statistic is the number of permutations $\pi$ such that
$$ \alpha\pi\alpha^{-1} = \pi^{-1}.$$
References
[1] Homolya, S., Szigeti, Jenő Solving equations in the symmetric group arXiv:2104.03593
Code
def statistic(la):
    total = 0
    cycles = []
    for p in la:
        cycles.append(tuple(range(total+1, total+p+1)))
        total += p
    a = Permutation(cycles)
    return sum(1 for pi in Permutations(len(a)) if pi*a*pi == a)

Created
Apr 09, 2021 at 11:05 by Martin Rubey
Updated
Apr 09, 2021 at 11:05 by Martin Rubey