Identifier
Values
([(0,1)],2) => [1] => [[1]] => 0
([(1,2)],3) => [1] => [[1]] => 0
([(0,2),(1,2)],3) => [1,1] => [[1],[2]] => 0
([(0,1),(0,2),(1,2)],3) => [3] => [[1,2,3]] => 0
([(2,3)],4) => [1] => [[1]] => 0
([(1,3),(2,3)],4) => [1,1] => [[1],[2]] => 0
([(0,3),(1,3),(2,3)],4) => [1,1,1] => [[1],[2],[3]] => 0
([(0,3),(1,2)],4) => [1,1] => [[1],[2]] => 0
([(0,3),(1,2),(2,3)],4) => [1,1,1] => [[1],[2],[3]] => 0
([(1,2),(1,3),(2,3)],4) => [3] => [[1,2,3]] => 0
([(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => [[1,3,4],[2]] => 1
([(0,2),(0,3),(1,2),(1,3)],4) => [4] => [[1,2,3,4]] => 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [5] => [[1,2,3,4,5]] => 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [6] => [[1,2,3,4,5,6]] => 0
([(3,4)],5) => [1] => [[1]] => 0
([(2,4),(3,4)],5) => [1,1] => [[1],[2]] => 0
([(1,4),(2,4),(3,4)],5) => [1,1,1] => [[1],[2],[3]] => 0
([(0,4),(1,4),(2,4),(3,4)],5) => [1,1,1,1] => [[1],[2],[3],[4]] => 0
([(1,4),(2,3)],5) => [1,1] => [[1],[2]] => 0
([(1,4),(2,3),(3,4)],5) => [1,1,1] => [[1],[2],[3]] => 0
([(0,1),(2,4),(3,4)],5) => [1,1,1] => [[1],[2],[3]] => 0
([(2,3),(2,4),(3,4)],5) => [3] => [[1,2,3]] => 0
([(0,4),(1,4),(2,3),(3,4)],5) => [1,1,1,1] => [[1],[2],[3],[4]] => 0
([(1,4),(2,3),(2,4),(3,4)],5) => [3,1] => [[1,3,4],[2]] => 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [[1,4,5],[2],[3]] => 1
([(1,3),(1,4),(2,3),(2,4)],5) => [4] => [[1,2,3,4]] => 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [4,1] => [[1,3,4,5],[2]] => 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5] => [[1,2,3,4,5]] => 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [3,1,1] => [[1,4,5],[2],[3]] => 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5,1] => [[1,3,4,5,6],[2]] => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => [6] => [[1,2,3,4,5,6]] => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [7] => [[1,2,3,4,5,6,7]] => 0
([(0,4),(1,3),(2,3),(2,4)],5) => [1,1,1,1] => [[1],[2],[3],[4]] => 0
([(0,1),(2,3),(2,4),(3,4)],5) => [3,1] => [[1,3,4],[2]] => 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [3,1,1] => [[1,4,5],[2],[3]] => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [3,3] => [[1,2,3],[4,5,6]] => 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [5] => [[1,2,3,4,5]] => 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [6] => [[1,2,3,4,5,6]] => 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => [7] => [[1,2,3,4,5,6,7]] => 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => [5,1] => [[1,3,4,5,6],[2]] => 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [6] => [[1,2,3,4,5,6]] => 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [6,1] => [[1,3,4,5,6,7],[2]] => 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [8] => [[1,2,3,4,5,6,7,8]] => 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => [7] => [[1,2,3,4,5,6,7]] => 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => [8] => [[1,2,3,4,5,6,7,8]] => 0
([(4,5)],6) => [1] => [[1]] => 0
([(3,5),(4,5)],6) => [1,1] => [[1],[2]] => 0
([(2,5),(3,5),(4,5)],6) => [1,1,1] => [[1],[2],[3]] => 0
([(1,5),(2,5),(3,5),(4,5)],6) => [1,1,1,1] => [[1],[2],[3],[4]] => 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1] => [[1],[2],[3],[4],[5]] => 0
([(2,5),(3,4)],6) => [1,1] => [[1],[2]] => 0
([(2,5),(3,4),(4,5)],6) => [1,1,1] => [[1],[2],[3]] => 0
([(1,2),(3,5),(4,5)],6) => [1,1,1] => [[1],[2],[3]] => 0
([(3,4),(3,5),(4,5)],6) => [3] => [[1,2,3]] => 0
([(1,5),(2,5),(3,4),(4,5)],6) => [1,1,1,1] => [[1],[2],[3],[4]] => 0
([(0,1),(2,5),(3,5),(4,5)],6) => [1,1,1,1] => [[1],[2],[3],[4]] => 0
([(2,5),(3,4),(3,5),(4,5)],6) => [3,1] => [[1,3,4],[2]] => 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [1,1,1,1,1] => [[1],[2],[3],[4],[5]] => 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1] => [[1,4,5],[2],[3]] => 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => 1
([(2,4),(2,5),(3,4),(3,5)],6) => [4] => [[1,2,3,4]] => 0
([(0,5),(1,5),(2,4),(3,4)],6) => [1,1,1,1] => [[1],[2],[3],[4]] => 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [4,1] => [[1,3,4,5],[2]] => 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [1,1,1,1,1] => [[1],[2],[3],[4],[5]] => 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5] => [[1,2,3,4,5]] => 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,1,1] => [[1,4,5],[2],[3]] => 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [1,1,1,1,1] => [[1],[2],[3],[4],[5]] => 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1] => [[1,3,4,5,6],[2]] => 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1,1] => [[1,4,5,6,7],[2],[3]] => 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [6] => [[1,2,3,4,5,6]] => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [6,1] => [[1,3,4,5,6,7],[2]] => 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7] => [[1,2,3,4,5,6,7]] => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1,1] => [[1,4,5,6,7],[2],[3]] => 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [8] => [[1,2,3,4,5,6,7,8]] => 0
([(0,5),(1,4),(2,3)],6) => [1,1,1] => [[1],[2],[3]] => 0
([(1,5),(2,4),(3,4),(3,5)],6) => [1,1,1,1] => [[1],[2],[3],[4]] => 0
([(0,1),(2,5),(3,4),(4,5)],6) => [1,1,1,1] => [[1],[2],[3],[4]] => 0
([(1,2),(3,4),(3,5),(4,5)],6) => [3,1] => [[1,3,4],[2]] => 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [1,1,1,1,1] => [[1],[2],[3],[4],[5]] => 0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1] => [[1,4,5],[2],[3]] => 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1] => [[1,4,5],[2],[3]] => 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3] => [[1,2,3],[4,5,6]] => 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3,1] => [[1,3,4],[2,6,7],[5]] => 2
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => [5] => [[1,2,3,4,5]] => 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [6] => [[1,2,3,4,5,6]] => 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => [5,1] => [[1,3,4,5,6],[2]] => 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [5,1] => [[1,3,4,5,6],[2]] => 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => 1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [6,1] => [[1,3,4,5,6,7],[2]] => 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1,1] => [[1,4,5,6,7],[2],[3]] => 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [7] => [[1,2,3,4,5,6,7]] => 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [1,1,1,1,1] => [[1],[2],[3],[4],[5]] => 0
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [4,1] => [[1,3,4,5],[2]] => 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,1,1] => [[1,4,5],[2],[3]] => 1
>>> Load all 388 entries. <<<
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => 1
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1] => [[1,3,4,5,6],[2]] => 1
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => 1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => [4,3] => [[1,2,3,7],[4,5,6]] => 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => [5,1,1] => [[1,4,5,6,7],[2],[3]] => 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,1] => [[1,3,4],[2,6,7],[5]] => 2
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,3] => [[1,2,3,7,8],[4,5,6]] => 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6] => [[1,2,3,4,5,6]] => 0
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [5,1,1] => [[1,4,5,6,7],[2],[3]] => 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,1] => [[1,3,4,5,6,7],[2]] => 1
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,1,1] => [[1,4,5,6,7,8],[2],[3]] => 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [7] => [[1,2,3,4,5,6,7]] => 0
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6) => [8] => [[1,2,3,4,5,6,7,8]] => 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => [[1,2,3,4,5,6,7,8]] => 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => [[1,2,3,4,5,6,7,8]] => 0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,1,1] => [[1,4,5,6,7,8],[2],[3]] => 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [6,1] => [[1,3,4,5,6,7],[2]] => 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [7] => [[1,2,3,4,5,6,7]] => 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [8] => [[1,2,3,4,5,6,7,8]] => 0
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => [6] => [[1,2,3,4,5,6]] => 0
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => [7] => [[1,2,3,4,5,6,7]] => 0
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [6,1] => [[1,3,4,5,6,7],[2]] => 1
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [7] => [[1,2,3,4,5,6,7]] => 0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [5,1,1] => [[1,4,5,6,7],[2],[3]] => 1
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [6,1] => [[1,3,4,5,6,7],[2]] => 1
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => [[1,2,3,4,5,6,7,8]] => 0
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [8] => [[1,2,3,4,5,6,7,8]] => 0
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => [8] => [[1,2,3,4,5,6,7,8]] => 0
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => [[1,2,3],[4,5,6]] => 0
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => [5,1,1] => [[1,4,5,6,7],[2],[3]] => 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => [3,3,1] => [[1,3,4],[2,6,7],[5]] => 2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,1] => [[1,3,4,5,6,7],[2]] => 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [5,3] => [[1,2,3,7,8],[4,5,6]] => 1
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,1,1] => [[1,4,5,6,7,8],[2],[3]] => 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => [8] => [[1,2,3,4,5,6,7,8]] => 0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6) => [8] => [[1,2,3,4,5,6,7,8]] => 0
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [8] => [[1,2,3,4,5,6,7,8]] => 0
([(5,6)],7) => [1] => [[1]] => 0
([(4,6),(5,6)],7) => [1,1] => [[1],[2]] => 0
([(3,6),(4,6),(5,6)],7) => [1,1,1] => [[1],[2],[3]] => 0
([(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1] => [[1],[2],[3],[4]] => 0
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1] => [[1],[2],[3],[4],[5]] => 0
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => 0
([(3,6),(4,5)],7) => [1,1] => [[1],[2]] => 0
([(3,6),(4,5),(5,6)],7) => [1,1,1] => [[1],[2],[3]] => 0
([(2,3),(4,6),(5,6)],7) => [1,1,1] => [[1],[2],[3]] => 0
([(4,5),(4,6),(5,6)],7) => [3] => [[1,2,3]] => 0
([(2,6),(3,6),(4,5),(5,6)],7) => [1,1,1,1] => [[1],[2],[3],[4]] => 0
([(1,2),(3,6),(4,6),(5,6)],7) => [1,1,1,1] => [[1],[2],[3],[4]] => 0
([(3,6),(4,5),(4,6),(5,6)],7) => [3,1] => [[1,3,4],[2]] => 1
([(1,6),(2,6),(3,6),(4,5),(5,6)],7) => [1,1,1,1,1] => [[1],[2],[3],[4],[5]] => 0
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1] => [[1],[2],[3],[4],[5]] => 0
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1] => [[1,4,5],[2],[3]] => 1
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => [1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => 0
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => 1
([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [[1,6,7],[2],[3],[4],[5]] => 1
([(3,5),(3,6),(4,5),(4,6)],7) => [4] => [[1,2,3,4]] => 0
([(1,6),(2,6),(3,5),(4,5)],7) => [1,1,1,1] => [[1],[2],[3],[4]] => 0
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [4,1] => [[1,3,4,5],[2]] => 1
([(1,6),(2,6),(3,4),(4,5),(5,6)],7) => [1,1,1,1,1] => [[1],[2],[3],[4],[5]] => 0
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [1,1,1,1,1] => [[1],[2],[3],[4],[5]] => 0
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5] => [[1,2,3,4,5]] => 0
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1] => [[1,4,5],[2],[3]] => 1
([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => [1,1,1,1,1] => [[1],[2],[3],[4],[5]] => 0
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [4,1,1] => [[1,4,5,6],[2],[3]] => 1
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => [1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => 0
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1] => [[1,3,4,5,6],[2]] => 1
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => 1
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => [1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => 0
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [[1,5,6,7],[2],[3],[4]] => 1
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [[1,4,5,6,7],[2],[3]] => 1
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [[1,6,7],[2],[3],[4],[5]] => 1
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [[1,5,6,7,8],[2],[3],[4]] => 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [6] => [[1,2,3,4,5,6]] => 0
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1] => [[1,4,5,6],[2],[3]] => 1
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => [1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => 0
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [6,1] => [[1,3,4,5,6,7],[2]] => 1
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [[1,5,6,7],[2],[3],[4]] => 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7] => [[1,2,3,4,5,6,7]] => 0
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [[1,4,5,6,7],[2],[3]] => 1
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [[1,6,7],[2],[3],[4],[5]] => 1
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [6,1,1] => [[1,4,5,6,7,8],[2],[3]] => 1
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [[1,5,6,7,8],[2],[3],[4]] => 1
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [8] => [[1,2,3,4,5,6,7,8]] => 0
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [6,1,1] => [[1,4,5,6,7,8],[2],[3]] => 1
([(1,6),(2,5),(3,4)],7) => [1,1,1] => [[1],[2],[3]] => 0
([(2,6),(3,5),(4,5),(4,6)],7) => [1,1,1,1] => [[1],[2],[3],[4]] => 0
([(1,2),(3,6),(4,5),(5,6)],7) => [1,1,1,1] => [[1],[2],[3],[4]] => 0
([(0,3),(1,2),(4,6),(5,6)],7) => [1,1,1,1] => [[1],[2],[3],[4]] => 0
([(2,3),(4,5),(4,6),(5,6)],7) => [3,1] => [[1,3,4],[2]] => 1
([(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [1,1,1,1,1] => [[1],[2],[3],[4],[5]] => 0
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [1,1,1,1,1] => [[1],[2],[3],[4],[5]] => 0
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [3,1,1] => [[1,4,5],[2],[3]] => 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1] => [[1,4,5],[2],[3]] => 1
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => 0
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => 1
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => 1
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3] => [[1,2,3],[4,5,6]] => 0
([(0,6),(1,6),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [[1,6,7],[2],[3],[4],[5]] => 1
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,1] => [[1,3,4],[2,6,7],[5]] => 2
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,1,1] => [[1,4,5],[2,7,8],[3],[6]] => 2
([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5] => [[1,2,3,4,5]] => 0
([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [4,1,1] => [[1,4,5,6],[2],[3]] => 1
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => [1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => 0
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [6] => [[1,2,3,4,5,6]] => 0
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => [5,1] => [[1,3,4,5,6],[2]] => 1
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1] => [[1,3,4,5,6],[2]] => 1
([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => 1
([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => [4,1,1,1] => [[1,5,6,7],[2],[3],[4]] => 1
([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [6,1] => [[1,3,4,5,6,7],[2]] => 1
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [[1,6,7],[2],[3],[4],[5]] => 1
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => [5,1,1] => [[1,4,5,6,7],[2],[3]] => 1
([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [[1,4,5,6,7],[2],[3]] => 1
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [[1,6,7],[2],[3],[4],[5]] => 1
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [7] => [[1,2,3,4,5,6,7]] => 0
([(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [6,1,1] => [[1,4,5,6,7,8],[2],[3]] => 1
([(0,6),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [[1,5,6,7,8],[2],[3],[4]] => 1
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
([(1,6),(2,5),(3,4),(3,5),(4,6)],7) => [1,1,1,1,1] => [[1],[2],[3],[4],[5]] => 0
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => [4,1] => [[1,3,4,5],[2]] => 1
([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [1,1,1,1,1] => [[1],[2],[3],[4],[5]] => 0
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,1,1] => [[1,4,5],[2],[3]] => 1
([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => [4,1,1] => [[1,4,5,6],[2],[3]] => 1
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => [1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => 0
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1] => [[1,4,5,6],[2],[3]] => 1
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => 1
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => 1
([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => 1
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1] => [[1,3,4,5,6],[2]] => 1
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => [1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => 0
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => 1
([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => 1
([(0,5),(1,6),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => [4,1,1,1] => [[1,5,6,7],[2],[3],[4]] => 1
([(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [4,3] => [[1,2,3,7],[4,5,6]] => 1
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7) => [3,1,1,1,1] => [[1,6,7],[2],[3],[4],[5]] => 1
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [5,1,1] => [[1,4,5,6,7],[2],[3]] => 1
([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [[1,6,7],[2],[3],[4],[5]] => 1
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [[1,4,5,6,7],[2],[3]] => 1
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,1] => [[1,3,4],[2,6,7],[5]] => 2
([(0,6),(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [3,1,1,1,1] => [[1,6,7],[2],[3],[4],[5]] => 1
([(0,6),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [4,3,1] => [[1,3,4,8],[2,6,7],[5]] => 3
([(0,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [5,1,1,1] => [[1,5,6,7,8],[2],[3],[4]] => 1
([(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3] => [[1,2,3,7,8],[4,5,6]] => 1
([(0,6),(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,1,1] => [[1,4,5],[2,7,8],[3],[6]] => 2
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => 1
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6] => [[1,2,3,4,5,6]] => 0
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [3,1,1,1,1] => [[1,6,7],[2],[3],[4],[5]] => 1
([(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [[1,4,5,6,7],[2],[3]] => 1
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1] => [[1,3,4,5,6,7],[2]] => 1
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [[1,5,6,7,8],[2],[3],[4]] => 1
([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => [[1,4,5,6,7,8],[2],[3]] => 1
([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [7] => [[1,2,3,4,5,6,7]] => 0
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [[1,4,5,6,7],[2],[3]] => 1
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [6,1,1] => [[1,4,5,6,7,8],[2],[3]] => 1
([(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [8] => [[1,2,3,4,5,6,7,8]] => 0
([(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [6,1,1] => [[1,4,5,6,7,8],[2],[3]] => 1
([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
([(0,6),(1,5),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [[1,5,6,7,8],[2],[3],[4]] => 1
([(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => [[1,2,3,4,5,6,7,8]] => 0
([(0,6),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [[1,5,6,7,8],[2],[3],[4]] => 1
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => [[1,4,5,6,7,8],[2],[3]] => 1
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7) => [4,1,1,1] => [[1,5,6,7],[2],[3],[4]] => 1
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [6,1] => [[1,3,4,5,6,7],[2]] => 1
([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7) => [3,1,1,1,1] => [[1,6,7],[2],[3],[4],[5]] => 1
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7) => [6,1,1] => [[1,4,5,6,7,8],[2],[3]] => 1
([(0,5),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [4,3,1] => [[1,3,4,8],[2,6,7],[5]] => 3
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [5,1,1,1] => [[1,5,6,7,8],[2],[3],[4]] => 1
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,1,1] => [[1,4,5],[2,7,8],[3],[6]] => 2
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6)],7) => [6,1,1] => [[1,4,5,6,7,8],[2],[3]] => 1
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [[1,5,6,7,8],[2],[3],[4]] => 1
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => [[1,2,3,4,5,6,7,8]] => 0
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => [[1,4,5,6,7,8],[2],[3]] => 1
([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [6,1] => [[1,3,4,5,6,7],[2]] => 1
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [7] => [[1,2,3,4,5,6,7]] => 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [6,1,1] => [[1,4,5,6,7,8],[2],[3]] => 1
([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [6,1,1] => [[1,4,5,6,7,8],[2],[3]] => 1
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [8] => [[1,2,3,4,5,6,7,8]] => 0
([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7) => [6] => [[1,2,3,4,5,6]] => 0
([(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7) => [7] => [[1,2,3,4,5,6,7]] => 0
([(0,6),(1,2),(1,3),(2,5),(3,4),(4,6),(5,6)],7) => [6,1] => [[1,3,4,5,6,7],[2]] => 1
([(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [6,1] => [[1,3,4,5,6,7],[2]] => 1
([(1,2),(1,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [7] => [[1,2,3,4,5,6,7]] => 0
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7) => [5,1,1] => [[1,4,5,6,7],[2],[3]] => 1
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [[1,4,5,6,7],[2],[3]] => 1
([(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [6,1] => [[1,3,4,5,6,7],[2]] => 1
([(0,4),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [[1,5,6,7],[2],[3],[4]] => 1
([(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7) => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
([(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => [[1,2,3,4,5,6,7,8]] => 0
([(0,6),(1,2),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [[1,5,6,7,8],[2],[3],[4]] => 1
([(0,6),(1,4),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => [[1,4,5,6,7,8],[2],[3]] => 1
([(0,6),(1,2),(1,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
([(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [8] => [[1,2,3,4,5,6,7,8]] => 0
([(0,6),(1,4),(2,3),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [[1,5,6,7,8],[2],[3],[4]] => 1
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [6,1,1] => [[1,4,5,6,7,8],[2],[3]] => 1
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => [4,1,1] => [[1,4,5,6],[2],[3]] => 1
([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [[1,5,6,7],[2],[3],[4]] => 1
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => [5,1,1] => [[1,4,5,6,7],[2],[3]] => 1
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(5,6)],7) => [3,1,1,1,1] => [[1,6,7],[2],[3],[4],[5]] => 1
([(0,6),(1,6),(2,3),(2,4),(3,5),(4,5),(5,6)],7) => [4,1,1,1] => [[1,5,6,7],[2],[3],[4]] => 1
([(0,4),(1,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7) => [3,1,1,1,1] => [[1,6,7],[2],[3],[4],[5]] => 1
([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7) => [4,4] => [[1,2,3,4],[5,6,7,8]] => 0
([(0,4),(1,4),(1,6),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => [5,1,1,1] => [[1,5,6,7,8],[2],[3],[4]] => 1
([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,1] => [[1,3,4,8],[2,6,7],[5]] => 3
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [5,1,1,1] => [[1,5,6,7,8],[2],[3],[4]] => 1
([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [3,3,1,1] => [[1,4,5],[2,7,8],[3],[6]] => 2
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => [8] => [[1,2,3,4,5,6,7,8]] => 0
([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => [6,1,1] => [[1,4,5,6,7,8],[2],[3]] => 1
([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [8] => [[1,2,3,4,5,6,7,8]] => 0
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5)],7) => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
([(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7) => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [1,1,1,1,1] => [[1],[2],[3],[4],[5]] => 0
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => [3,1,1] => [[1,4,5],[2],[3]] => 1
([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => 0
([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => 1
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [3,1,1,1,1] => [[1,6,7],[2],[3],[4],[5]] => 1
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,1] => [[1,3,4],[2,6,7],[5]] => 2
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [3,3,1,1] => [[1,4,5],[2,7,8],[3],[6]] => 2
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => [1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => 0
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5,1] => [[1,3,4,5,6],[2]] => 1
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => 1
([(0,6),(1,4),(2,3),(2,6),(3,5),(4,5),(5,6)],7) => [4,1,1,1] => [[1,5,6,7],[2],[3],[4]] => 1
([(0,4),(1,3),(2,5),(2,6),(3,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [[1,6,7],[2],[3],[4],[5]] => 1
([(0,1),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [6,1] => [[1,3,4,5,6,7],[2]] => 1
([(0,5),(1,2),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => [5,1,1] => [[1,4,5,6,7],[2],[3]] => 1
([(0,6),(1,4),(2,3),(2,5),(3,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [[1,6,7],[2],[3],[4],[5]] => 1
([(0,5),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6)],7) => [3,1,1,1,1] => [[1,6,7],[2],[3],[4],[5]] => 1
([(0,5),(1,4),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [[1,6,7],[2],[3],[4],[5]] => 1
([(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,6),(5,6)],7) => [6,1,1] => [[1,4,5,6,7,8],[2],[3]] => 1
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => [4,3,1] => [[1,3,4,8],[2,6,7],[5]] => 3
([(0,4),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [3,3,1,1] => [[1,4,5],[2,7,8],[3],[6]] => 2
([(0,1),(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [5,3] => [[1,2,3,7,8],[4,5,6]] => 1
([(0,4),(1,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [[1,5,6,7,8],[2],[3],[4]] => 1
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,1,1] => [[1,4,5],[2,7,8],[3],[6]] => 2
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => [3,3] => [[1,2,3],[4,5,6]] => 0
([(1,3),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => [5,1,1] => [[1,4,5,6,7],[2],[3]] => 1
([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [[1,4,5,6,7],[2],[3]] => 1
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [3,3,1] => [[1,3,4],[2,6,7],[5]] => 2
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [3,3,1] => [[1,3,4],[2,6,7],[5]] => 2
([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1] => [[1,3,4,5,6,7],[2]] => 1
([(0,6),(1,2),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [[1,5,6,7,8],[2],[3],[4]] => 1
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [3,3,1,1] => [[1,4,5],[2,7,8],[3],[6]] => 2
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,3] => [[1,2,3,7,8],[4,5,6]] => 1
([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => [[1,4,5,6,7,8],[2],[3]] => 1
([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => [[1,4,5,6,7,8],[2],[3]] => 1
([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => [8] => [[1,2,3,4,5,6,7,8]] => 0
([(0,6),(1,5),(2,3),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => [6,1,1] => [[1,4,5,6,7,8],[2],[3]] => 1
([(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(4,5),(5,6)],7) => [8] => [[1,2,3,4,5,6,7,8]] => 0
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7) => [3,3,1,1] => [[1,4,5],[2,7,8],[3],[6]] => 2
([(0,5),(0,6),(1,2),(1,4),(2,3),(3,5),(4,6)],7) => [7] => [[1,2,3,4,5,6,7]] => 0
([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
([(0,3),(1,4),(1,5),(2,4),(2,6),(3,5),(4,6),(5,6)],7) => [6,1,1] => [[1,4,5,6,7,8],[2],[3]] => 1
([(0,1),(0,3),(1,2),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => [[1,2,3,4,5,6,7,8]] => 0
([(0,3),(0,4),(1,2),(1,6),(2,5),(3,5),(4,6),(5,6)],7) => [8] => [[1,2,3,4,5,6,7,8]] => 0
([(0,6),(1,2),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1,1] => [[1,5,6,7,8],[2],[3],[4]] => 1
([(0,6),(1,2),(1,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
([(0,3),(1,2),(1,5),(2,4),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => [[1,4,5,6,7,8],[2],[3]] => 1
([(0,6),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => [6,1,1] => [[1,4,5,6,7,8],[2],[3]] => 1
([(0,6),(1,2),(1,6),(2,4),(3,4),(3,5),(4,5),(5,6)],7) => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => [8] => [[1,2,3,4,5,6,7,8]] => 0
([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [8] => [[1,2,3,4,5,6,7,8]] => 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => [6,1,1] => [[1,4,5,6,7,8],[2],[3]] => 1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,6),(4,6),(5,6)],7) => [4,3,1] => [[1,3,4,8],[2,6,7],[5]] => 3
([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7) => [4,3] => [[1,2,3,7],[4,5,6]] => 1
([(0,3),(1,3),(1,4),(2,5),(2,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [[1,5,6,7,8],[2],[3],[4]] => 1
([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => [[1,4,5,6,7,8],[2],[3]] => 1
([(0,6),(1,2),(1,4),(2,4),(3,5),(3,6),(4,5),(5,6)],7) => [3,3,1,1] => [[1,4,5],[2,7,8],[3],[6]] => 2
([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3] => [[1,2,3,7,8],[4,5,6]] => 1
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5)],7) => [5,1,1,1] => [[1,5,6,7,8],[2],[3],[4]] => 1
search for individual values
searching the database for the individual values of this statistic
Description
The number of natural descents of a standard Young tableau.
A natural descent of a standard tableau $T$ is an entry $i$ such that $i+1$ appears in a higher row than $i$ in English notation.
Map
reading tableau
Description
Return the RSK recording tableau of the reading word of the (standard) tableau $T$ labeled down (in English convention) each column to the shape of a partition.
Map
to edge-partition of biconnected components
Description
Sends a graph to the partition recording the number of edges in its biconnected components.
The biconnected components are also known as blocks of a graph.