Identifier
-
Mp00014:
Binary trees
—to 132-avoiding permutation⟶
Permutations
Mp00089: Permutations —Inverse Kreweras complement⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001719: Lattices ⟶ ℤ
Values
[.,.] => [1] => [1] => ([(0,1)],2) => 1
[.,[.,.]] => [2,1] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[.,.],.] => [1,2] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[.,[.,[.,.]]] => [3,2,1] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 1
[.,[[.,.],.]] => [2,3,1] => [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => 1
[[.,.],[.,.]] => [3,1,2] => [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 1
[[.,[.,.]],.] => [2,1,3] => [1,3,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 1
[[[.,.],.],.] => [1,2,3] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 1
[.,[.,[.,[.,.]]]] => [4,3,2,1] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9) => 1
[.,[.,[[.,.],.]]] => [3,4,2,1] => [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 1
[.,[[.,.],[.,.]]] => [4,2,3,1] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 1
[.,[[.,[.,.]],.]] => [3,2,4,1] => [2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9) => 1
[[.,.],[.,[.,.]]] => [4,3,1,2] => [4,2,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 1
[[.,.],[[.,.],.]] => [3,4,1,2] => [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9) => 1
[[.,[.,.]],[.,.]] => [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 1
[[[.,.],.],[.,.]] => [4,1,2,3] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8) => 1
[[.,[.,[.,.]]],.] => [3,2,1,4] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8) => 1
[[.,[[.,.],.]],.] => [2,3,1,4] => [1,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9) => 1
[[[.,.],[.,.]],.] => [3,1,2,4] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 1
[[[.,[.,.]],.],.] => [2,1,3,4] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 1
[[[[.,.],.],.],.] => [1,2,3,4] => [2,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9) => 1
[[.,[.,.]],[.,[.,.]]] => [5,4,2,1,3] => [3,5,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[[.,[.,.]],[[.,.],.]] => [4,5,2,1,3] => [3,5,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[[.,[.,[.,.]]],[.,.]] => [5,3,2,1,4] => [3,2,5,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[[.,[[.,.],.]],[.,.]] => [5,2,3,1,4] => [2,3,5,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[[[.,.],[.,.]],[.,.]] => [5,3,1,2,4] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 1
[[[.,[.,.]],.],[.,.]] => [5,2,1,3,4] => [2,4,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[[[.,.],[.,[.,.]]],.] => [4,3,1,2,5] => [4,2,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[[[.,.],[[.,.],.]],.] => [3,4,1,2,5] => [4,1,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[[[.,[.,.]],[.,.]],.] => [4,2,1,3,5] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 1
[[[[.,.],.],[.,.]],.] => [4,1,2,3,5] => [3,4,1,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[[[[.,.],[.,.]],.],.] => [3,1,2,4,5] => [3,1,4,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[[[.,.],[.,.]],[.,[.,.]]] => [6,5,3,1,2,4] => [5,3,6,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[[[.,.],[.,.]],[[.,.],.]] => [5,6,3,1,2,4] => [5,3,6,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[[[.,.],[.,[.,.]]],[.,.]] => [6,4,3,1,2,5] => [5,3,2,6,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[[[.,.],[[.,.],.]],[.,.]] => [6,3,4,1,2,5] => [5,2,3,6,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[[[.,[.,.]],[.,.]],[.,.]] => [6,4,2,1,3,5] => [3,5,2,6,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 1
[[[[.,.],.],[.,.]],[.,.]] => [6,4,1,2,3,5] => [4,5,2,6,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[[[[.,.],[.,.]],.],[.,.]] => [6,3,1,2,4,5] => [4,2,5,6,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[[[.,[.,.]],[.,[.,.]]],.] => [5,4,2,1,3,6] => [3,5,2,1,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[[[.,[.,.]],[[.,.],.]],.] => [4,5,2,1,3,6] => [3,5,1,2,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[[[.,[.,[.,.]]],[.,.]],.] => [5,3,2,1,4,6] => [3,2,5,1,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[[[.,[[.,.],.]],[.,.]],.] => [5,2,3,1,4,6] => [2,3,5,1,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[[[[.,.],[.,.]],[.,.]],.] => [5,3,1,2,4,6] => [4,2,5,1,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 1
[[[[.,[.,.]],.],[.,.]],.] => [5,2,1,3,4,6] => [2,4,5,1,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[[[[.,[.,.]],[.,.]],.],.] => [4,2,1,3,5,6] => [2,4,1,5,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[[[[.,.],[.,.]],[.,.]],[.,.]] => [7,5,3,1,2,4,6] => [5,3,6,2,7,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[[[[.,[.,.]],[.,.]],[.,.]],.] => [6,4,2,1,3,5,7] => [3,5,2,6,1,7,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of shortest chains of small intervals from the bottom to the top in a lattice.
An interval $[a, b]$ in a lattice is small if $b$ is a join of elements covering $a$.
An interval $[a, b]$ in a lattice is small if $b$ is a join of elements covering $a$.
Map
lattice of intervals
Description
The lattice of intervals of a permutation.
An interval of a permutation $\pi$ is a possibly empty interval of values that appear in consecutive positions of $\pi$. The lattice of intervals of $\pi$ has as elements the intervals of $\pi$, ordered by set inclusion.
An interval of a permutation $\pi$ is a possibly empty interval of values that appear in consecutive positions of $\pi$. The lattice of intervals of $\pi$ has as elements the intervals of $\pi$, ordered by set inclusion.
Map
Inverse Kreweras complement
Description
Sends the permutation $\pi \in \mathfrak{S}_n$ to the permutation $c\pi^{-1}$ where $c = (1,\ldots,n)$ is the long cycle.
Map
to 132-avoiding permutation
Description
Return a 132-avoiding permutation corresponding to a binary tree.
The linear extensions of a binary tree form an interval of the weak order called the Sylvester class of the tree. This permutation is the maximal element of the Sylvester class.
The linear extensions of a binary tree form an interval of the weak order called the Sylvester class of the tree. This permutation is the maximal element of the Sylvester class.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!