Identifier
Values
[.,.] => [1] => [1] => ([(0,1)],2) => 1
[.,[.,.]] => [2,1] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[.,.],.] => [1,2] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[.,[.,[.,.]]] => [3,2,1] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 1
[.,[[.,.],.]] => [2,3,1] => [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => 1
[[.,.],[.,.]] => [3,1,2] => [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 1
[[.,[.,.]],.] => [2,1,3] => [1,3,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 1
[[[.,.],.],.] => [1,2,3] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 1
[.,[.,[.,[.,.]]]] => [4,3,2,1] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9) => 1
[.,[.,[[.,.],.]]] => [3,4,2,1] => [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 1
[.,[[.,.],[.,.]]] => [4,2,3,1] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 1
[.,[[.,[.,.]],.]] => [3,2,4,1] => [2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9) => 1
[[.,.],[.,[.,.]]] => [4,3,1,2] => [4,2,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 1
[[.,.],[[.,.],.]] => [3,4,1,2] => [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9) => 1
[[.,[.,.]],[.,.]] => [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 1
[[[.,.],.],[.,.]] => [4,1,2,3] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8) => 1
[[.,[.,[.,.]]],.] => [3,2,1,4] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8) => 1
[[.,[[.,.],.]],.] => [2,3,1,4] => [1,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9) => 1
[[[.,.],[.,.]],.] => [3,1,2,4] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 1
[[[.,[.,.]],.],.] => [2,1,3,4] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 1
[[[[.,.],.],.],.] => [1,2,3,4] => [2,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9) => 1
[[.,[.,.]],[.,[.,.]]] => [5,4,2,1,3] => [3,5,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[[.,[.,.]],[[.,.],.]] => [4,5,2,1,3] => [3,5,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[[.,[.,[.,.]]],[.,.]] => [5,3,2,1,4] => [3,2,5,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[[.,[[.,.],.]],[.,.]] => [5,2,3,1,4] => [2,3,5,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[[[.,.],[.,.]],[.,.]] => [5,3,1,2,4] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 1
[[[.,[.,.]],.],[.,.]] => [5,2,1,3,4] => [2,4,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[[[.,.],[.,[.,.]]],.] => [4,3,1,2,5] => [4,2,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[[[.,.],[[.,.],.]],.] => [3,4,1,2,5] => [4,1,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[[[.,[.,.]],[.,.]],.] => [4,2,1,3,5] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 1
[[[[.,.],.],[.,.]],.] => [4,1,2,3,5] => [3,4,1,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[[[[.,.],[.,.]],.],.] => [3,1,2,4,5] => [3,1,4,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[[[.,.],[.,.]],[.,[.,.]]] => [6,5,3,1,2,4] => [5,3,6,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[[[.,.],[.,.]],[[.,.],.]] => [5,6,3,1,2,4] => [5,3,6,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[[[.,.],[.,[.,.]]],[.,.]] => [6,4,3,1,2,5] => [5,3,2,6,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[[[.,.],[[.,.],.]],[.,.]] => [6,3,4,1,2,5] => [5,2,3,6,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[[[.,[.,.]],[.,.]],[.,.]] => [6,4,2,1,3,5] => [3,5,2,6,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 1
[[[[.,.],.],[.,.]],[.,.]] => [6,4,1,2,3,5] => [4,5,2,6,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[[[[.,.],[.,.]],.],[.,.]] => [6,3,1,2,4,5] => [4,2,5,6,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[[[.,[.,.]],[.,[.,.]]],.] => [5,4,2,1,3,6] => [3,5,2,1,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[[[.,[.,.]],[[.,.],.]],.] => [4,5,2,1,3,6] => [3,5,1,2,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[[[.,[.,[.,.]]],[.,.]],.] => [5,3,2,1,4,6] => [3,2,5,1,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[[[.,[[.,.],.]],[.,.]],.] => [5,2,3,1,4,6] => [2,3,5,1,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[[[[.,.],[.,.]],[.,.]],.] => [5,3,1,2,4,6] => [4,2,5,1,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 1
[[[[.,[.,.]],.],[.,.]],.] => [5,2,1,3,4,6] => [2,4,5,1,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[[[[.,[.,.]],[.,.]],.],.] => [4,2,1,3,5,6] => [2,4,1,5,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[[[[.,.],[.,.]],[.,.]],[.,.]] => [7,5,3,1,2,4,6] => [5,3,6,2,7,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[[[[.,[.,.]],[.,.]],[.,.]],.] => [6,4,2,1,3,5,7] => [3,5,2,6,1,7,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of shortest chains of small intervals from the bottom to the top in a lattice.
An interval $[a, b]$ in a lattice is small if $b$ is a join of elements covering $a$.
Map
lattice of intervals
Description
The lattice of intervals of a permutation.
An interval of a permutation $\pi$ is a possibly empty interval of values that appear in consecutive positions of $\pi$. The lattice of intervals of $\pi$ has as elements the intervals of $\pi$, ordered by set inclusion.
Map
Inverse Kreweras complement
Description
Sends the permutation $\pi \in \mathfrak{S}_n$ to the permutation $c\pi^{-1}$ where $c = (1,\ldots,n)$ is the long cycle.
Map
to 132-avoiding permutation
Description
Return a 132-avoiding permutation corresponding to a binary tree.
The linear extensions of a binary tree form an interval of the weak order called the Sylvester class of the tree. This permutation is the maximal element of the Sylvester class.