Identifier
-
Mp00121:
Dyck paths
—Cori-Le Borgne involution⟶
Dyck paths
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001719: Lattices ⟶ ℤ
Values
[1,0] => [1,0] => [1] => ([(0,1)],2) => 1
[1,0,1,0] => [1,0,1,0] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,0,0] => [1,1,0,0] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,0,1,0,1,0] => [1,0,1,0,1,0] => [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => 1
[1,0,1,1,0,0] => [1,1,0,1,0,0] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 1
[1,1,0,0,1,0] => [1,1,0,0,1,0] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 1
[1,1,0,1,0,0] => [1,0,1,1,0,0] => [1,3,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 1
[1,1,1,0,0,0] => [1,1,1,0,0,0] => [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 1
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,0] => [2,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9) => 1
[1,0,1,1,0,0,1,0] => [1,1,0,1,0,0,1,0] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 1
[1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,0] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 1
[1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,0,0] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8) => 1
[1,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,0] => [2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9) => 1
[1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8) => 1
[1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9) => 1
[1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0] => [1,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9) => 1
[1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,0,0] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 1
[1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,0,0] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 1
[1,1,1,0,0,1,0,0] => [1,1,1,0,0,0,1,0] => [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 1
[1,1,1,0,1,0,0,0] => [1,0,1,1,1,0,0,0] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 1
[1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9) => 1
[1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,0,0] => [2,4,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [3,4,1,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,0,0,0] => [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 1
[1,1,0,1,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,0,0] => [2,3,5,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 1
[1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => 1
[1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => 1
[1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [3,5,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [3,1,4,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[1,1,1,0,0,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => 1
[1,1,1,0,1,0,0,0,1,0] => [1,0,1,1,1,0,0,1,0,0] => [1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => 1
[1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [2,5,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,0,0,1,0,0,0] => [4,1,5,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0] => [4,1,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [3,1,5,6,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [2,4,5,1,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[1,1,0,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [3,4,1,6,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[1,1,0,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [2,4,1,6,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 1
[1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [3,1,5,2,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 1
[1,1,0,0,1,1,1,0,0,1,0,0] => [1,1,1,0,0,1,1,0,0,0,1,0] => [3,1,5,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[1,1,0,0,1,1,1,0,1,0,0,0] => [1,0,1,1,1,0,0,1,1,0,0,0] => [1,4,2,6,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [4,1,6,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[1,1,0,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [3,1,4,6,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 1
[1,1,0,1,0,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [2,3,5,1,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[1,1,0,1,1,0,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [2,4,1,5,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[1,1,0,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0,1,0] => [2,4,1,5,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[1,1,0,1,1,0,1,0,0,0,1,0] => [1,0,1,1,0,1,1,0,0,1,0,0] => [1,3,5,2,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[1,1,0,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [2,4,6,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 1
[1,1,0,1,1,1,0,0,0,0,1,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [3,5,1,6,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 1
[1,1,0,1,1,1,0,0,0,1,0,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [3,5,1,2,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[1,1,1,0,0,1,1,1,0,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [3,1,6,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[1,1,1,0,1,1,0,0,0,0,1,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [2,5,1,6,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[1,1,1,0,1,1,0,0,0,1,0,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [2,5,1,3,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 1
[1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [4,1,2,6,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[1,1,1,1,0,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [4,1,5,2,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 1
[1,1,0,0,1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,0,0,1,1,0,0,0] => [3,1,5,2,7,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[1,1,0,0,1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,1,0,0] => [2,4,1,6,3,7,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[1,1,0,0,1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,0,0,1,1,0,0,0,0] => [3,5,1,7,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[1,1,0,0,1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,0,0,1,1,0,0,1,0,0,0] => [4,1,6,2,7,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[1,1,0,1,0,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,0,1,0,1,1,0,0,0] => [2,4,1,5,7,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[1,1,0,1,0,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,1,0,0,1,0,0] => [3,1,4,6,2,7,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[1,1,0,1,1,0,0,1,1,1,0,0,0,0] => [1,1,1,0,0,1,1,0,1,1,0,0,0,0] => [3,1,5,7,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[1,1,0,1,1,0,1,1,0,0,0,0,1,0] => [1,1,0,1,1,0,1,1,0,0,1,0,0,0] => [2,4,6,1,7,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[1,1,0,1,1,0,1,1,0,0,0,1,0,0] => [1,1,0,1,1,0,1,1,0,0,0,1,0,0] => [2,4,6,1,3,7,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[1,1,0,1,1,1,0,0,0,1,0,0,1,0] => [1,1,1,0,1,1,0,0,1,0,0,1,0,0] => [3,5,1,6,2,7,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[1,1,1,0,0,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,1,1,1,0,0,0,1,0,0] => [3,1,6,2,4,7,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[1,1,1,0,1,1,0,0,0,0,1,1,0,0] => [1,1,0,1,1,1,0,0,0,1,1,0,0,0] => [2,5,1,3,7,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[1,1,1,0,1,1,0,0,0,1,0,0,1,0] => [1,1,0,1,1,1,0,0,1,0,0,1,0,0] => [2,5,1,6,3,7,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[1,1,1,1,0,0,0,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,1,0,0,0] => [4,1,5,2,7,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of shortest chains of small intervals from the bottom to the top in a lattice.
An interval $[a, b]$ in a lattice is small if $b$ is a join of elements covering $a$.
An interval $[a, b]$ in a lattice is small if $b$ is a join of elements covering $a$.
Map
lattice of intervals
Description
The lattice of intervals of a permutation.
An interval of a permutation $\pi$ is a possibly empty interval of values that appear in consecutive positions of $\pi$. The lattice of intervals of $\pi$ has as elements the intervals of $\pi$, ordered by set inclusion.
An interval of a permutation $\pi$ is a possibly empty interval of values that appear in consecutive positions of $\pi$. The lattice of intervals of $\pi$ has as elements the intervals of $\pi$, ordered by set inclusion.
Map
Cori-Le Borgne involution
Description
The Cori-Le Borgne involution on Dyck paths.
Append an additional down step to the Dyck path and consider its (literal) reversal. The image of the involution is then the unique rotation of this word which is a Dyck word followed by an additional down step. Alternatively, it is the composite $\zeta\circ\mathrm{rev}\circ\zeta^{(-1)}$, where $\zeta$ is Mp00030zeta map.
Append an additional down step to the Dyck path and consider its (literal) reversal. The image of the involution is then the unique rotation of this word which is a Dyck word followed by an additional down step. Alternatively, it is the composite $\zeta\circ\mathrm{rev}\circ\zeta^{(-1)}$, where $\zeta$ is Mp00030zeta map.
Map
to 321-avoiding permutation (Krattenthaler)
Description
Krattenthaler's bijection to 321-avoiding permutations.
Draw the path of semilength $n$ in an $n\times n$ square matrix, starting at the upper left corner, with right and down steps, and staying below the diagonal. Then the permutation matrix is obtained by placing ones into the cells corresponding to the peaks of the path and placing ones into the remaining columns from left to right, such that the row indices of the cells increase.
Draw the path of semilength $n$ in an $n\times n$ square matrix, starting at the upper left corner, with right and down steps, and staying below the diagonal. Then the permutation matrix is obtained by placing ones into the cells corresponding to the peaks of the path and placing ones into the remaining columns from left to right, such that the row indices of the cells increase.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!