Identifier
-
Mp00024:
Dyck paths
—to 321-avoiding permutation⟶
Permutations
Mp00088: Permutations —Kreweras complement⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001720: Lattices ⟶ ℤ
Values
[1,0] => [1] => [1] => ([(0,1)],2) => 2
[1,0,1,0] => [2,1] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,0,0] => [1,2] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,0,1,0] => [2,1,3] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => 2
[1,0,1,1,0,0] => [2,3,1] => [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => 2
[1,1,0,0,1,0] => [3,1,2] => [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 2
[1,1,0,1,0,0] => [1,3,2] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 2
[1,1,1,0,0,0] => [1,2,3] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 2
[1,0,1,0,1,0,1,0] => [2,1,4,3] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9) => 2
[1,0,1,0,1,1,0,0] => [2,4,1,3] => [4,2,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 2
[1,0,1,1,0,0,1,0] => [2,1,3,4] => [3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 2
[1,0,1,1,0,1,0,0] => [2,3,1,4] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9) => 2
[1,1,0,0,1,0,1,0] => [3,1,4,2] => [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 2
[1,1,0,0,1,1,0,0] => [3,4,1,2] => [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9) => 2
[1,1,0,1,0,0,1,0] => [3,1,2,4] => [3,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9) => 2
[1,1,0,1,0,1,0,0] => [1,3,2,4] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 2
[1,1,0,1,1,0,0,0] => [1,3,4,2] => [2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9) => 2
[1,1,1,0,0,0,1,0] => [4,1,2,3] => [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8) => 2
[1,1,1,0,0,1,0,0] => [1,4,2,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,1,1,0,1,0,0,0] => [1,2,4,3] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 2
[1,1,1,1,0,0,0,0] => [1,2,3,4] => [2,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9) => 2
[1,0,1,0,1,0,1,1,0,0] => [2,4,1,3,5] => [4,2,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => 2
[1,0,1,1,0,0,1,0,1,0] => [2,1,5,3,4] => [3,2,5,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 2
[1,0,1,1,0,0,1,1,0,0] => [2,5,1,3,4] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,0,0,1,0,1,0,1,0] => [3,1,4,2,5] => [3,5,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => 2
[1,1,0,1,0,0,1,0,1,0] => [3,1,5,2,4] => [3,5,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 2
[1,1,0,1,0,1,1,0,0,0] => [1,3,5,2,4] => [2,5,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,0,0,0,1,0,1,0] => [4,1,5,2,3] => [3,5,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 2
[1,1,1,0,0,1,0,1,0,0] => [1,4,2,5,3] => [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => 2
[1,1,1,0,0,1,1,0,0,0] => [1,4,5,2,3] => [2,5,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 2
[1,1,1,1,0,0,0,1,0,0] => [1,5,2,3,4] => [2,4,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 2
[1,1,1,1,0,0,1,0,0,0] => [1,2,5,3,4] => [2,3,5,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 2
[1,0,1,0,1,0,1,1,0,0,1,0] => [2,1,4,6,3,5] => [3,2,6,4,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 2
[1,0,1,0,1,0,1,1,0,1,0,0] => [2,4,1,6,3,5] => [4,2,6,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,0,1,0,1,0,1,1,1,0,0,0] => [2,4,6,1,3,5] => [5,2,6,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,0,1,0,1,1,0,1,0,1,0,0] => [2,4,1,5,3,6] => [4,2,6,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 2
[1,0,1,1,0,0,1,0,1,1,0,0] => [2,5,1,3,6,4] => [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 2
[1,0,1,1,0,0,1,1,0,1,0,0] => [2,5,1,6,3,4] => [4,2,6,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,0,1,1,0,0,1,1,1,0,0,0] => [2,5,6,1,3,4] => [5,2,6,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 2
[1,0,1,1,1,0,0,0,1,1,0,0] => [2,6,1,3,4,5] => [4,2,5,6,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 2
[1,0,1,1,1,0,0,1,1,0,0,0] => [2,3,6,1,4,5] => [5,2,3,6,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 2
[1,1,0,0,1,0,1,1,0,0,1,0] => [3,1,4,6,2,5] => [3,6,2,4,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,0,1,0,0,1,0,1,0] => [3,1,5,2,4,6] => [3,5,2,6,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 2
[1,1,0,1,0,1,1,0,1,0,0,0] => [1,3,5,2,6,4] => [2,5,3,1,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 2
[1,1,0,1,0,1,1,1,0,0,0,0] => [1,3,5,6,2,4] => [2,6,3,1,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 2
[1,1,0,1,1,0,0,0,1,0,1,0] => [3,1,6,2,4,5] => [3,5,2,6,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,1,0,0,0,1,1,0,0] => [3,6,1,2,4,5] => [4,5,2,6,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 2
[1,1,0,1,1,0,0,1,1,0,0,0] => [1,3,6,2,4,5] => [2,5,3,6,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,1,0,1,1,0,0,0,0] => [1,3,4,6,2,5] => [2,6,3,4,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 2
[1,1,1,0,1,0,0,1,0,1,0,0] => [1,4,2,6,3,5] => [2,4,6,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,1,0,0,1,1,0,0,0] => [1,4,6,2,3,5] => [2,5,6,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 2
[1,1,1,0,1,0,1,1,0,0,0,0] => [1,2,4,6,3,5] => [2,3,6,4,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 2
[1,1,1,1,0,0,0,1,0,1,0,0] => [1,5,2,6,3,4] => [2,4,6,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,0,1,0,1,0,1,1,1,0,1,0,0,0] => [2,4,6,1,7,3,5] => [5,2,7,3,1,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[1,0,1,0,1,1,0,0,1,1,0,1,0,0] => [2,4,1,7,3,5,6] => [4,2,6,3,7,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[1,0,1,0,1,1,0,0,1,1,1,0,0,0] => [2,4,7,1,3,5,6] => [5,2,6,3,7,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[1,0,1,0,1,1,0,1,1,0,0,1,0,0] => [2,4,1,5,7,3,6] => [4,2,7,3,5,1,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[1,0,1,1,0,1,0,0,1,0,1,1,0,0] => [2,5,1,3,7,4,6] => [4,2,5,7,3,1,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[1,0,1,1,1,0,0,0,1,0,1,1,0,0] => [2,6,1,3,7,4,5] => [4,2,5,7,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[1,1,0,0,1,1,0,0,1,1,0,0,1,0] => [3,1,4,7,2,5,6] => [3,6,2,4,7,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[1,1,0,1,0,1,0,0,1,0,1,0,1,0] => [3,1,5,2,7,4,6] => [3,5,2,7,4,1,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[1,1,0,1,0,1,0,0,1,1,0,0,1,0] => [3,1,5,7,2,4,6] => [3,6,2,7,4,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[1,1,0,1,0,1,0,0,1,1,0,1,0,0] => [3,5,1,7,2,4,6] => [4,6,2,7,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[1,1,0,1,0,1,0,1,1,0,1,0,0,0] => [1,3,5,2,7,4,6] => [2,5,3,7,4,1,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[1,1,0,1,0,1,0,1,1,1,0,0,0,0] => [1,3,5,7,2,4,6] => [2,6,3,7,4,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[1,1,0,1,1,0,0,0,1,0,1,0,1,0] => [3,1,6,2,7,4,5] => [3,5,2,7,1,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[1,1,0,1,1,0,0,0,1,1,0,1,0,0] => [3,6,1,7,2,4,5] => [4,6,2,7,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[1,1,0,1,1,0,0,1,1,0,1,0,0,0] => [1,3,6,2,7,4,5] => [2,5,3,7,1,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[1,1,1,0,0,1,0,0,1,0,1,0,1,0] => [4,1,5,2,7,3,6] => [3,5,7,2,4,1,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[1,1,1,0,0,1,0,1,1,0,0,1,0,0] => [1,4,2,5,7,3,6] => [2,4,7,3,5,1,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[1,1,1,0,1,0,0,1,1,0,1,0,0,0] => [1,4,6,2,7,3,5] => [2,5,7,3,1,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[1,1,1,0,1,1,0,0,0,1,0,1,0,0] => [1,4,2,7,3,5,6] => [2,4,6,3,7,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The minimal length of a chain of small intervals in a lattice.
An interval $[a, b]$ is small if $b$ is a join of elements covering $a$.
An interval $[a, b]$ is small if $b$ is a join of elements covering $a$.
Map
lattice of intervals
Description
The lattice of intervals of a permutation.
An interval of a permutation $\pi$ is a possibly empty interval of values that appear in consecutive positions of $\pi$. The lattice of intervals of $\pi$ has as elements the intervals of $\pi$, ordered by set inclusion.
An interval of a permutation $\pi$ is a possibly empty interval of values that appear in consecutive positions of $\pi$. The lattice of intervals of $\pi$ has as elements the intervals of $\pi$, ordered by set inclusion.
Map
to 321-avoiding permutation
Description
Sends a Dyck path to a 321-avoiding permutation.
This bijection defined in [3, pp. 60] and in [2, Section 3.1].
It is shown in [1] that it sends the number of centered tunnels to the number of fixed points, the number of right tunnels to the number of exceedences, and the semilength plus the height of the middle point to 2 times the length of the longest increasing subsequence.
This bijection defined in [3, pp. 60] and in [2, Section 3.1].
It is shown in [1] that it sends the number of centered tunnels to the number of fixed points, the number of right tunnels to the number of exceedences, and the semilength plus the height of the middle point to 2 times the length of the longest increasing subsequence.
Map
Kreweras complement
Description
Sends the permutation $\pi \in \mathfrak{S}_n$ to the permutation $\pi^{-1}c$ where $c = (1,\ldots,n)$ is the long cycle.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!