Identifier
-
Mp00080:
Set partitions
—to permutation⟶
Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001720: Lattices ⟶ ℤ
Values
{{1}} => [1] => [1] => ([(0,1)],2) => 2
{{1,2}} => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1},{2}} => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
{{1,2,3}} => [2,3,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => 2
{{1,2},{3}} => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 2
{{1,3},{2}} => [3,2,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => 2
{{1},{2,3}} => [1,3,2] => [1,3,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 2
{{1},{2},{3}} => [1,2,3] => [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => 2
{{1,2,3,4}} => [2,3,4,1] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9) => 2
{{1,2,3},{4}} => [2,3,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9) => 2
{{1,2},{3,4}} => [2,1,4,3] => [2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8) => 2
{{1,2},{3},{4}} => [2,1,3,4] => [2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9) => 2
{{1,3,4},{2}} => [3,2,4,1] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9) => 2
{{1,3},{2},{4}} => [3,2,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9) => 2
{{1},{2,3,4}} => [1,3,4,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9) => 2
{{1},{2,3},{4}} => [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9) => 2
{{1},{2,4},{3}} => [1,4,3,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9) => 2
{{1},{2},{3,4}} => [1,2,4,3] => [1,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9) => 2
{{1,2,3,5},{4,6}} => [2,3,5,6,1,4] => [5,2,6,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
{{1,2,4},{3,5,6}} => [2,4,5,1,6,3] => [4,6,3,1,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
{{1,3,5},{2},{4,6}} => [3,2,5,6,1,4] => [5,2,6,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
{{1,2,3,5},{4,6,7}} => [2,3,5,6,1,7,4] => [5,2,7,4,1,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
{{1,2,4},{3,6,7},{5}} => [2,4,6,1,5,7,3] => [4,7,5,1,3,6,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
{{1,2,5},{3,4,7},{6}} => [2,5,4,7,1,6,3] => [5,7,3,6,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
{{1,2,5},{3},{4,7},{6}} => [2,5,3,7,1,6,4] => [5,7,3,6,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
{{1,3,6},{2,4},{5,7}} => [3,4,6,2,7,1,5] => [6,4,7,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
{{1,3,5},{2},{4,6,7}} => [3,2,5,6,1,7,4] => [5,2,7,4,1,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
{{1,3},{2,5},{4,7},{6}} => [3,5,1,7,2,6,4] => [5,7,3,6,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
{{1,4},{2,3,6},{5,7}} => [4,3,6,1,7,2,5] => [6,4,7,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
{{1,4},{2},{3,6},{5,7}} => [4,2,6,1,7,3,5] => [6,4,7,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The minimal length of a chain of small intervals in a lattice.
An interval $[a, b]$ is small if $b$ is a join of elements covering $a$.
An interval $[a, b]$ is small if $b$ is a join of elements covering $a$.
Map
Demazure product with inverse
Description
This map sends a permutation $\pi$ to $\pi^{-1} \star \pi$ where $\star$ denotes the Demazure product on permutations.
This map is a surjection onto the set of involutions, i.e., the set of permutations $\pi$ for which $\pi = \pi^{-1}$.
This map is a surjection onto the set of involutions, i.e., the set of permutations $\pi$ for which $\pi = \pi^{-1}$.
Map
to permutation
Description
Sends the set partition to the permutation obtained by considering the blocks as increasing cycles.
Map
lattice of intervals
Description
The lattice of intervals of a permutation.
An interval of a permutation $\pi$ is a possibly empty interval of values that appear in consecutive positions of $\pi$. The lattice of intervals of $\pi$ has as elements the intervals of $\pi$, ordered by set inclusion.
An interval of a permutation $\pi$ is a possibly empty interval of values that appear in consecutive positions of $\pi$. The lattice of intervals of $\pi$ has as elements the intervals of $\pi$, ordered by set inclusion.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!