Identifier
Values
[.,.] => [1] => [1] => ([(0,1)],2) => 2
[.,[.,.]] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[[.,.],.] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[.,[.,[.,.]]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 2
[.,[[.,.],.]] => [2,3,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => 2
[[.,.],[.,.]] => [3,1,2] => [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 2
[[.,[.,.]],.] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 2
[[[.,.],.],.] => [1,2,3] => [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => 2
[.,[.,[.,[.,.]]]] => [4,3,2,1] => [3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 2
[.,[.,[[.,.],.]]] => [3,4,2,1] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9) => 2
[.,[[.,.],[.,.]]] => [4,2,3,1] => [2,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9) => 2
[.,[[.,[.,.]],.]] => [3,2,4,1] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 2
[[.,.],[.,[.,.]]] => [4,3,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[.,.],[[.,.],.]] => [3,4,1,2] => [4,1,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 2
[[.,[.,.]],[.,.]] => [4,2,1,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[[.,.],.],[.,.]] => [4,1,2,3] => [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9) => 2
[[.,[.,[.,.]]],.] => [3,2,1,4] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 2
[[.,[[.,.],.]],.] => [2,3,1,4] => [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9) => 2
[[[.,.],[.,.]],.] => [3,1,2,4] => [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 2
[[[.,[.,.]],.],.] => [2,1,3,4] => [2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9) => 2
[.,[.,[.,[[.,.],.]]]] => [4,5,3,2,1] => [3,5,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => 2
[[.,.],[.,[.,[.,.]]]] => [5,4,3,1,2] => [3,4,1,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 2
[[.,.],[.,[[.,.],.]]] => [4,5,3,1,2] => [3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[[.,.],[[.,.],[.,.]]] => [5,3,4,1,2] => [4,3,1,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 2
[[.,.],[[.,[.,.]],.]] => [4,3,5,1,2] => [5,3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => 2
[[.,[.,.]],[.,[.,.]]] => [5,4,2,1,3] => [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[[.,[.,.]],[[.,.],.]] => [4,5,2,1,3] => [5,2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => 2
[[[.,.],.],[.,[.,.]]] => [5,4,1,2,3] => [4,1,5,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 2
[[.,[.,[.,.]]],[.,.]] => [5,3,2,1,4] => [3,2,5,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 2
[[.,[[.,.],.]],[.,.]] => [5,2,3,1,4] => [2,3,5,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 2
[[[.,.],[.,.]],[.,.]] => [5,3,1,2,4] => [3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[[[.,[.,.]],.],[.,.]] => [5,2,1,3,4] => [2,5,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 2
[[[.,.],[.,[.,.]]],.] => [4,3,1,2,5] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => 2
[[[.,[.,.]],[.,.]],.] => [4,2,1,3,5] => [2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => 2
[.,[.,[[.,[.,[.,.]]],.]]] => [5,4,3,6,2,1] => [3,6,4,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 2
[.,[[.,.],[.,[[.,.],.]]]] => [5,6,4,2,3,1] => [4,2,6,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 2
[[.,.],[.,[.,[[.,.],.]]]] => [5,6,4,3,1,2] => [4,3,6,1,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 2
[[.,.],[.,[[[.,.],.],.]]] => [4,5,6,3,1,2] => [6,3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 2
[[.,.],[[.,.],[[.,.],.]]] => [5,6,3,4,1,2] => [3,4,6,1,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 2
[[.,.],[[.,[.,[.,.]]],.]] => [5,4,3,6,1,2] => [3,6,4,1,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[[.,.],[[.,[[.,.],.]],.]] => [4,5,3,6,1,2] => [3,6,1,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 2
[[.,[.,.]],[.,[.,[.,.]]]] => [6,5,4,2,1,3] => [4,2,5,1,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[[.,[.,.]],[.,[[.,.],.]]] => [5,6,4,2,1,3] => [4,2,6,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[[.,[.,.]],[[.,.],[.,.]]] => [6,4,5,2,1,3] => [5,2,4,1,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[[.,[.,.]],[[.,[.,.]],.]] => [5,4,6,2,1,3] => [6,2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 2
[[[.,.],.],[.,[.,[.,.]]]] => [6,5,4,1,2,3] => [4,1,5,2,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[[[.,.],.],[.,[[.,.],.]]] => [5,6,4,1,2,3] => [4,1,6,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[[[.,.],.],[[.,.],[.,.]]] => [6,4,5,1,2,3] => [5,1,4,2,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[[.,[.,[.,.]]],[.,[.,.]]] => [6,5,3,2,1,4] => [3,5,2,6,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[[.,[.,[.,.]]],[[.,.],.]] => [5,6,3,2,1,4] => [3,6,2,5,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[[.,[[.,.],.]],[.,[.,.]]] => [6,5,2,3,1,4] => [5,2,3,6,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 2
[[[.,.],[.,.]],[.,[.,.]]] => [6,5,3,1,2,4] => [3,5,1,6,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[[[.,.],[.,.]],[[.,.],.]] => [5,6,3,1,2,4] => [3,6,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[[[.,[.,.]],.],[.,[.,.]]] => [6,5,2,1,3,4] => [5,2,6,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 2
[[[.,.],[.,[.,.]]],[.,.]] => [6,4,3,1,2,5] => [3,4,1,6,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 2
[[[.,.],[[.,.],.]],[.,.]] => [6,3,4,1,2,5] => [4,3,1,6,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 2
[[[.,[.,.]],[.,.]],[.,.]] => [6,4,2,1,3,5] => [4,2,6,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[[[[.,.],.],[.,.]],[.,.]] => [6,4,1,2,3,5] => [4,1,6,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 2
[[[[.,.],[.,.]],.],[.,.]] => [6,3,1,2,4,5] => [3,1,6,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 2
[[[.,.],[.,[[.,.],.]]],.] => [4,5,3,1,2,6] => [3,5,1,4,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 2
[[[.,[.,.]],[.,[.,.]]],.] => [5,4,2,1,3,6] => [4,2,5,1,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 2
[[[[.,.],[.,.]],[.,.]],.] => [5,3,1,2,4,6] => [3,1,5,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 2
[[.,.],[.,[.,[[.,[.,.]],.]]]] => [6,5,7,4,3,1,2] => [4,7,3,5,1,6,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[.,.],[.,[.,[[[.,.],.],.]]]] => [5,6,7,4,3,1,2] => [4,7,3,6,1,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[.,[.,.]],[.,[[.,.],[.,.]]]] => [7,5,6,4,2,1,3] => [4,6,2,5,1,7,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[.,[.,.]],[.,[[.,[.,.]],.]]] => [6,5,7,4,2,1,3] => [4,7,2,5,1,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[.,[.,.]],[.,[[[.,.],.],.]]] => [5,6,7,4,2,1,3] => [4,7,2,6,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[.,[.,.]],[[.,[.,.]],[.,.]]] => [7,5,4,6,2,1,3] => [6,4,2,5,1,7,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[[.,.],.],[.,[[.,.],[.,.]]]] => [7,5,6,4,1,2,3] => [4,6,1,5,2,7,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[[.,.],.],[.,[[.,[.,.]],.]]] => [6,5,7,4,1,2,3] => [4,7,1,5,2,6,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[[.,.],.],[.,[[[.,.],.],.]]] => [5,6,7,4,1,2,3] => [4,7,1,6,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[[.,.],.],[[.,[.,.]],[.,.]]] => [7,5,4,6,1,2,3] => [6,4,1,5,2,7,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[.,[.,[.,.]]],[.,[.,[.,.]]]] => [7,6,5,3,2,1,4] => [5,3,6,2,7,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[.,[.,[.,.]]],[.,[[.,.],.]]] => [6,7,5,3,2,1,4] => [5,3,7,2,6,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[.,[.,[.,.]]],[[.,.],[.,.]]] => [7,5,6,3,2,1,4] => [6,3,5,2,7,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[.,[[.,.],.]],[.,[.,[.,.]]]] => [7,6,5,2,3,1,4] => [5,2,6,3,7,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[.,[[.,.],.]],[.,[[.,.],.]]] => [6,7,5,2,3,1,4] => [5,2,7,3,6,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[.,[[.,.],.]],[[.,.],[.,.]]] => [7,5,6,2,3,1,4] => [6,2,5,3,7,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[[.,.],[.,.]],[.,[.,[.,.]]]] => [7,6,5,3,1,2,4] => [5,3,6,1,7,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[[.,.],[.,.]],[.,[[.,.],.]]] => [6,7,5,3,1,2,4] => [5,3,7,1,6,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[[.,.],[.,.]],[[.,.],[.,.]]] => [7,5,6,3,1,2,4] => [6,3,5,1,7,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[.,[[.,.],[.,.]]],[.,[.,.]]] => [7,6,4,2,3,1,5] => [4,2,6,3,7,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[.,[[.,.],[.,.]]],[[.,.],.]] => [6,7,4,2,3,1,5] => [4,2,7,3,6,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[.,[[.,[.,.]],.]],[.,[.,.]]] => [7,6,3,2,4,1,5] => [3,6,2,4,7,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[.,[[.,[.,.]],.]],[[.,.],.]] => [6,7,3,2,4,1,5] => [3,7,2,4,6,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[[.,[.,.]],[.,.]],[.,[.,.]]] => [7,6,4,2,1,3,5] => [4,2,6,1,7,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[[.,[.,.]],[.,.]],[[.,.],.]] => [6,7,4,2,1,3,5] => [4,2,7,1,6,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[[[.,.],.],[.,.]],[.,[.,.]]] => [7,6,4,1,2,3,5] => [4,1,6,2,7,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[[[.,.],.],[.,.]],[[.,.],.]] => [6,7,4,1,2,3,5] => [4,1,7,2,6,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[[.,[.,.]],[.,[.,.]]],[.,.]] => [7,5,4,2,1,3,6] => [4,2,5,1,7,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[[.,[.,.]],[[.,.],.]],[.,.]] => [7,4,5,2,1,3,6] => [5,2,4,1,7,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[[[.,.],.],[.,[.,.]]],[.,.]] => [7,5,4,1,2,3,6] => [4,1,5,2,7,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[[[.,.],.],[[.,.],.]],[.,.]] => [7,4,5,1,2,3,6] => [5,1,4,2,7,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[[.,[.,[.,.]]],[.,.]],[.,.]] => [7,5,3,2,1,4,6] => [3,5,2,7,1,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
[[[[.,.],[.,.]],[.,.]],[.,.]] => [7,5,3,1,2,4,6] => [3,5,1,7,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The minimal length of a chain of small intervals in a lattice.
An interval $[a, b]$ is small if $b$ is a join of elements covering $a$.
Map
lattice of intervals
Description
The lattice of intervals of a permutation.
An interval of a permutation $\pi$ is a possibly empty interval of values that appear in consecutive positions of $\pi$. The lattice of intervals of $\pi$ has as elements the intervals of $\pi$, ordered by set inclusion.
Map
Clarke-Steingrimsson-Zeng inverse
Description
The inverse of the Clarke-Steingrimsson-Zeng map, sending excedances to descents.
This is the inverse of the map $\Phi$ in [1, sec.3].
Map
to 132-avoiding permutation
Description
Return a 132-avoiding permutation corresponding to a binary tree.
The linear extensions of a binary tree form an interval of the weak order called the Sylvester class of the tree. This permutation is the maximal element of the Sylvester class.