Identifier
- St001722: Binary words ⟶ ℤ
Values
=>
0=>1
1=>1
00=>1
01=>1
10=>1
11=>1
000=>1
001=>1
010=>1
011=>1
100=>1
101=>1
110=>1
111=>1
0000=>1
0001=>1
0010=>1
0011=>1
0100=>2
0101=>1
0110=>2
0111=>1
1000=>1
1001=>1
1010=>1
1011=>1
1100=>1
1101=>1
1110=>1
1111=>1
00000=>1
00001=>1
00010=>1
00011=>1
00100=>3
00101=>1
00110=>2
00111=>1
01000=>3
01001=>2
01010=>1
01011=>1
01100=>1
01101=>3
01110=>3
01111=>1
10000=>1
10001=>1
10010=>1
10011=>1
10100=>2
10101=>1
10110=>2
10111=>1
11000=>1
11001=>1
11010=>1
11011=>1
11100=>1
11101=>1
11110=>1
11111=>1
000000=>1
000001=>1
000010=>1
000011=>1
000100=>4
000101=>1
000110=>2
000111=>1
001000=>6
001001=>3
001010=>1
001011=>1
001100=>1
001101=>3
001110=>3
001111=>1
010000=>4
010001=>3
010010=>2
010011=>2
010100=>5
010101=>1
010110=>2
010111=>1
011000=>3
011001=>1
011010=>6
011011=>4
011100=>4
011101=>6
011110=>4
011111=>1
100000=>1
100001=>1
100010=>1
100011=>1
100100=>3
100101=>1
100110=>2
100111=>1
101000=>3
101001=>2
101010=>1
101011=>1
101100=>1
101101=>3
101110=>3
101111=>1
110000=>1
110001=>1
110010=>1
110011=>1
110100=>2
110101=>1
110110=>2
110111=>1
111000=>1
111001=>1
111010=>1
111011=>1
111100=>1
111101=>1
111110=>1
111111=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of minimal chains with small intervals between a binary word and the top element.
A valley in a binary word is a subsequence $01$, or a trailing $0$. A peak is a subsequence $10$ or a trailing $1$. Let $P$ be the lattice on binary words of length $n$, where the covering elements of a word are obtained by replacing a valley with a peak. An interval $[w_1, w_2]$ in $P$ is small if $w_2$ is obtained from $w_1$ by replacing some valleys with peaks.
This statistic counts the number of chains $w = w_1 < \dots < w_d = 1\dots 1$ to the top element of minimal length.
For example, there are two such chains for the word $0110$:
$$ 0110 < 1011 < 1101 < 1110 < 1111 $$
and
$$ 0110 < 1010 < 1101 < 1110 < 1111. $$
A valley in a binary word is a subsequence $01$, or a trailing $0$. A peak is a subsequence $10$ or a trailing $1$. Let $P$ be the lattice on binary words of length $n$, where the covering elements of a word are obtained by replacing a valley with a peak. An interval $[w_1, w_2]$ in $P$ is small if $w_2$ is obtained from $w_1$ by replacing some valleys with peaks.
This statistic counts the number of chains $w = w_1 < \dots < w_d = 1\dots 1$ to the top element of minimal length.
For example, there are two such chains for the word $0110$:
$$ 0110 < 1011 < 1101 < 1110 < 1111 $$
and
$$ 0110 < 1010 < 1101 < 1110 < 1111. $$
References
[1] Tasoulas, I., Manes, K., Sapounakis, A., Tsikouras, P. Chains with small intervals in the lattice of binary paths MathSciNet:4054761
Code
def filling(w): """ Return the join of all elements covering w. This is obtained by replacing every valley with a peak. """ w = list(w) f = list(w) for i in range(len(w)-1): if w[i:i+2] == [0, 1]: f[i:i+2] = [1, 0] if w[len(w)-1] == 0: f[len(w)-1] = 1 return Words([0,1])(f) def degree(w): d = 0 while w.count(0): w = filling(w) d += 1 return d def path_smaller(a, b): assert len(a) == len(b) return all(sum(a[:i]) <= sum(b[:i]) for i in range(1, len(a)+1)) @cached_function def path_smaller_poset(n): return Poset([Words([0,1], length=n), path_smaller]) def statistic(w): """ See MathSciNet:4054761, Prop. 6. """ n = len(w) w = Words([0,1], n)(w) P = path_smaller_poset(n) I = P.incidence_algebra(QQ) mu = I.moebius() return abs(ZZ((mu^degree(w))(P(w), P.top())))
Created
May 23, 2021 at 17:08 by Martin Rubey
Updated
Dec 28, 2023 at 17:02 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!