Identifier
Values
([],1) => ([],2) => 0
([],2) => ([],3) => 0
([(0,1)],2) => ([(1,2)],3) => 0
([],3) => ([],4) => 0
([(1,2)],3) => ([(2,3)],4) => 0
([(0,2),(1,2)],3) => ([(1,3),(2,3)],4) => 1
([(0,1),(0,2),(1,2)],3) => ([(1,2),(1,3),(2,3)],4) => 1
([],4) => ([],5) => 0
([(2,3)],4) => ([(3,4)],5) => 0
([(1,3),(2,3)],4) => ([(2,4),(3,4)],5) => 1
([(0,3),(1,3),(2,3)],4) => ([(1,4),(2,4),(3,4)],5) => 2
([(0,3),(1,2)],4) => ([(1,4),(2,3)],5) => 0
([(0,3),(1,2),(2,3)],4) => ([(1,4),(2,3),(3,4)],5) => 1
([(1,2),(1,3),(2,3)],4) => ([(2,3),(2,4),(3,4)],5) => 1
([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 2
([(0,2),(0,3),(1,2),(1,3)],4) => ([(1,3),(1,4),(2,3),(2,4)],5) => 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
([],5) => ([],6) => 0
([(3,4)],5) => ([(4,5)],6) => 0
([(2,4),(3,4)],5) => ([(3,5),(4,5)],6) => 1
([(1,4),(2,4),(3,4)],5) => ([(2,5),(3,5),(4,5)],6) => 2
([(0,4),(1,4),(2,4),(3,4)],5) => ([(1,5),(2,5),(3,5),(4,5)],6) => 3
([(1,4),(2,3)],5) => ([(2,5),(3,4)],6) => 0
([(1,4),(2,3),(3,4)],5) => ([(2,5),(3,4),(4,5)],6) => 1
([(0,1),(2,4),(3,4)],5) => ([(1,2),(3,5),(4,5)],6) => 1
([(2,3),(2,4),(3,4)],5) => ([(3,4),(3,5),(4,5)],6) => 1
([(0,4),(1,4),(2,3),(3,4)],5) => ([(1,5),(2,5),(3,4),(4,5)],6) => 2
([(1,4),(2,3),(2,4),(3,4)],5) => ([(2,5),(3,4),(3,5),(4,5)],6) => 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(1,3),(1,4),(2,3),(2,4)],5) => ([(2,4),(2,5),(3,4),(3,5)],6) => 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,4),(1,3),(2,3),(2,4)],5) => ([(1,5),(2,4),(3,4),(3,5)],6) => 1
([(0,1),(2,3),(2,4),(3,4)],5) => ([(1,2),(3,4),(3,5),(4,5)],6) => 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([],6) => ([],7) => 0
([(4,5)],6) => ([(5,6)],7) => 0
([(3,5),(4,5)],6) => ([(4,6),(5,6)],7) => 1
([(2,5),(3,5),(4,5)],6) => ([(3,6),(4,6),(5,6)],7) => 2
([(1,5),(2,5),(3,5),(4,5)],6) => ([(2,6),(3,6),(4,6),(5,6)],7) => 3
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 4
([(2,5),(3,4)],6) => ([(3,6),(4,5)],7) => 0
([(2,5),(3,4),(4,5)],6) => ([(3,6),(4,5),(5,6)],7) => 1
([(1,2),(3,5),(4,5)],6) => ([(2,3),(4,6),(5,6)],7) => 1
([(3,4),(3,5),(4,5)],6) => ([(4,5),(4,6),(5,6)],7) => 1
([(1,5),(2,5),(3,4),(4,5)],6) => ([(2,6),(3,6),(4,5),(5,6)],7) => 2
([(0,1),(2,5),(3,5),(4,5)],6) => ([(1,2),(3,6),(4,6),(5,6)],7) => 2
([(2,5),(3,4),(3,5),(4,5)],6) => ([(3,6),(4,5),(4,6),(5,6)],7) => 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 3
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(2,4),(2,5),(3,4),(3,5)],6) => ([(3,5),(3,6),(4,5),(4,6)],7) => 1
([(0,5),(1,5),(2,4),(3,4)],6) => ([(1,6),(2,6),(3,5),(4,5)],7) => 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => 3
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => 3
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 3
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,5),(1,4),(2,3)],6) => ([(1,6),(2,5),(3,4)],7) => 0
([(1,5),(2,4),(3,4),(3,5)],6) => ([(2,6),(3,5),(4,5),(4,6)],7) => 1
([(0,1),(2,5),(3,4),(4,5)],6) => ([(1,2),(3,6),(4,5),(5,6)],7) => 1
([(1,2),(3,4),(3,5),(4,5)],6) => ([(2,3),(4,5),(4,6),(5,6)],7) => 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(1,6),(2,5),(3,4),(4,6),(5,6)],7) => 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 3
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 4
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => 2
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => 2
>>> Load all 208 entries. <<<
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => 2
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => 3
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(1,6),(2,5),(3,4),(3,5),(4,6)],7) => 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => ([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => ([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => 2
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => ([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7) => 2
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => 2
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => 2
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => 3
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => ([(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => 3
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => 3
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => 2
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6) => ([(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => 3
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => 3
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => 3
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => 3
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 3
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 3
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 4
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => ([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7) => 2
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => ([(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7) => 2
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => 2
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => 2
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => 2
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 4
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => 2
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 3
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => 3
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 4
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => ([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => 2
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => ([(1,3),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => ([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => 2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => 3
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => ([(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(4,5),(5,6)],7) => 2
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => 3
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6) => ([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => 2
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => 2
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => 2
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => 3
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => 3
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => 3
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => 3
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 4
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 3
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The 2-packing differential of a graph.
The external neighbourhood (or boundary) of a set of vertices $S\subseteq V(G)$ is the set of vertices not in $S$ which are adjacent to a vertex in $S$.
The differential of a set of vertices $S\subseteq V(G)$ is the difference of the size of the external neighbourhood of $S$ and the size of $S$.
A set $S\subseteq V(G)$ is $2$-packing if the closed neighbourhoods of any two vertices in $S$ have empty intersection.
The $2$-packing differential of a graph is the maximal differential of any $2$-packing set of vertices.
Map
vertex addition
Description
Adds a disconnected vertex to a graph.