edit this statistic or download as text // json
Identifier
Values
=>
Cc0020;cc-rep
([],0)=>1 ([],1)=>2 ([],2)=>2 ([(0,1)],2)=>2 ([],3)=>2 ([(1,2)],3)=>3 ([(0,2),(1,2)],3)=>3 ([(0,1),(0,2),(1,2)],3)=>2 ([],4)=>2 ([(2,3)],4)=>3 ([(1,3),(2,3)],4)=>3 ([(0,3),(1,3),(2,3)],4)=>3 ([(0,3),(1,2)],4)=>3 ([(0,3),(1,2),(2,3)],4)=>3 ([(1,2),(1,3),(2,3)],4)=>3 ([(0,3),(1,2),(1,3),(2,3)],4)=>3 ([(0,2),(0,3),(1,2),(1,3)],4)=>3 ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>3 ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>2 ([],5)=>2 ([(3,4)],5)=>3 ([(2,4),(3,4)],5)=>3 ([(1,4),(2,4),(3,4)],5)=>3 ([(0,4),(1,4),(2,4),(3,4)],5)=>3 ([(1,4),(2,3)],5)=>3 ([(1,4),(2,3),(3,4)],5)=>3 ([(0,1),(2,4),(3,4)],5)=>3 ([(2,3),(2,4),(3,4)],5)=>3 ([(0,4),(1,4),(2,3),(3,4)],5)=>3 ([(1,4),(2,3),(2,4),(3,4)],5)=>4 ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>4 ([(1,3),(1,4),(2,3),(2,4)],5)=>3 ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>3 ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>4 ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>4 ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>4 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>3 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3 ([(0,4),(1,3),(2,3),(2,4)],5)=>3 ([(0,1),(2,3),(2,4),(3,4)],5)=>3 ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>3 ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>3 ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>3 ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>3 ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>3 ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>3 ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3 ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3 ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3 ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)=>3 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>3 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3 ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The minimal order of a graph which is not an induced subgraph of the given graph.
For example, the graph with two isolated vertices is not an induced subgraph of the complete graph on three vertices.
By contrast, the minimal number of vertices of a graph which is not a subgraph of a graph is one plus the clique number St000097The order of the largest clique of the graph..
Code
def statistic(G):
    for n in range(1, G.num_verts()+2):
        for H in graphs(n):
            if not G.subgraph_search(H, induced=True):
                return n
Created
Sep 13, 2021 at 11:13 by Martin Rubey
Updated
Sep 13, 2021 at 11:13 by Martin Rubey