Identifier
Values
([],1) => ([],1) => ([],0) => 1
([],2) => ([],1) => ([],0) => 1
([(0,1)],2) => ([(0,1)],2) => ([],1) => 2
([],3) => ([],1) => ([],0) => 1
([(1,2)],3) => ([(1,2)],3) => ([],1) => 2
([(0,2),(1,2)],3) => ([(0,1)],2) => ([],1) => 2
([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([],4) => ([],1) => ([],0) => 1
([(2,3)],4) => ([(1,2)],3) => ([],1) => 2
([(1,3),(2,3)],4) => ([(1,2)],3) => ([],1) => 2
([(0,3),(1,3),(2,3)],4) => ([(0,1)],2) => ([],1) => 2
([(0,3),(1,2)],4) => ([(0,3),(1,2)],4) => ([],2) => 2
([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => ([(0,2),(1,2)],3) => 3
([(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,1)],2) => ([],1) => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([],5) => ([],1) => ([],0) => 1
([(3,4)],5) => ([(1,2)],3) => ([],1) => 2
([(2,4),(3,4)],5) => ([(1,2)],3) => ([],1) => 2
([(1,4),(2,4),(3,4)],5) => ([(1,2)],3) => ([],1) => 2
([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => ([],1) => 2
([(1,4),(2,3)],5) => ([(1,4),(2,3)],5) => ([],2) => 2
([(1,4),(2,3),(3,4)],5) => ([(1,4),(2,3),(3,4)],5) => ([(0,2),(1,2)],3) => 3
([(0,1),(2,4),(3,4)],5) => ([(0,3),(1,2)],4) => ([],2) => 2
([(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => ([(0,2),(1,2)],3) => 3
([(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
([(1,3),(1,4),(2,3),(2,4)],5) => ([(1,2)],3) => ([],1) => 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => ([(0,2),(1,2)],3) => 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1)],2) => ([],1) => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,3),(1,2),(2,3)],4) => 3
([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,1),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(2,3)],4) => 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([],6) => ([],1) => ([],0) => 1
([(4,5)],6) => ([(1,2)],3) => ([],1) => 2
([(3,5),(4,5)],6) => ([(1,2)],3) => ([],1) => 2
([(2,5),(3,5),(4,5)],6) => ([(1,2)],3) => ([],1) => 2
([(1,5),(2,5),(3,5),(4,5)],6) => ([(1,2)],3) => ([],1) => 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => ([],1) => 2
([(2,5),(3,4)],6) => ([(1,4),(2,3)],5) => ([],2) => 2
([(2,5),(3,4),(4,5)],6) => ([(1,4),(2,3),(3,4)],5) => ([(0,2),(1,2)],3) => 3
([(1,2),(3,5),(4,5)],6) => ([(1,4),(2,3)],5) => ([],2) => 2
([(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => 2
([(1,5),(2,5),(3,4),(4,5)],6) => ([(1,4),(2,3),(3,4)],5) => ([(0,2),(1,2)],3) => 3
([(0,1),(2,5),(3,5),(4,5)],6) => ([(0,3),(1,2)],4) => ([],2) => 2
([(2,5),(3,4),(3,5),(4,5)],6) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => ([(0,2),(1,2)],3) => 3
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
([(2,4),(2,5),(3,4),(3,5)],6) => ([(1,2)],3) => ([],1) => 2
([(0,5),(1,5),(2,4),(3,4)],6) => ([(0,3),(1,2)],4) => ([],2) => 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(1,4),(2,3),(3,4)],5) => ([(0,2),(1,2)],3) => 3
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,3),(1,2),(2,3)],4) => 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 3
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => ([(0,2),(1,2)],3) => 3
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => ([(0,2),(1,2)],3) => 3
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 3
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,2)],3) => ([],1) => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,3),(1,2),(2,3)],4) => 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(1,2),(2,3)],4) => ([(0,2),(1,2)],3) => 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([],1) => 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,5),(1,4),(2,3)],6) => ([(0,5),(1,4),(2,3)],6) => ([],3) => 2
([(1,5),(2,4),(3,4),(3,5)],6) => ([(1,5),(2,4),(3,4),(3,5)],6) => ([(0,3),(1,2),(2,3)],4) => 3
([(0,1),(2,5),(3,4),(4,5)],6) => ([(0,1),(2,5),(3,4),(4,5)],6) => ([(1,3),(2,3)],4) => 3
([(1,2),(3,4),(3,5),(4,5)],6) => ([(1,2),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => 3
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 4
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 3
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 3
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 3
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(1,2)],4) => ([],2) => 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => ([(0,1),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(2,3)],4) => 3
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,3),(1,2),(2,3)],4) => 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(2,3)],4) => 3
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 3
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 3
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 3
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 3
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => ([(0,2),(1,2)],3) => 3
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 3
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => 2
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(1,2),(2,3)],4) => ([(0,2),(1,2)],3) => 3
>>> Load all 272 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The minimal order of a graph which is not an induced subgraph of the given graph.
For example, the graph with two isolated vertices is not an induced subgraph of the complete graph on three vertices.
By contrast, the minimal number of vertices of a graph which is not a subgraph of a graph is one plus the clique number St000097The order of the largest clique of the graph..
For example, the graph with two isolated vertices is not an induced subgraph of the complete graph on three vertices.
By contrast, the minimal number of vertices of a graph which is not a subgraph of a graph is one plus the clique number St000097The order of the largest clique of the graph..
Map
line graph
Description
The line graph of a graph.
Let $G$ be a graph with edge set $E$. Then its line graph is the graph with vertex set $E$, such that two vertices $e$ and $f$ are adjacent if and only if they are incident to a common vertex in $G$.
Let $G$ be a graph with edge set $E$. Then its line graph is the graph with vertex set $E$, such that two vertices $e$ and $f$ are adjacent if and only if they are incident to a common vertex in $G$.
Map
de-duplicate
Description
The de-duplicate of a graph.
Let $G = (V, E)$ be a graph. This map yields the graph whose vertex set is the set of (distinct) neighbourhoods $\{N_v | v \in V\}$ of $G$, and has an edge $(N_a, N_b)$ between two vertices if and only if $(a, b)$ is an edge of $G$. This is well-defined, because if $N_a = N_c$ and $N_b = N_d$, then $(a, b)\in E$ if and only if $(c, d)\in E$.
The image of this map is the set of so-called 'mating graphs' or 'point-determining graphs'.
This map preserves the chromatic number.
Let $G = (V, E)$ be a graph. This map yields the graph whose vertex set is the set of (distinct) neighbourhoods $\{N_v | v \in V\}$ of $G$, and has an edge $(N_a, N_b)$ between two vertices if and only if $(a, b)$ is an edge of $G$. This is well-defined, because if $N_a = N_c$ and $N_b = N_d$, then $(a, b)\in E$ if and only if $(c, d)\in E$.
The image of this map is the set of so-called 'mating graphs' or 'point-determining graphs'.
This map preserves the chromatic number.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!