Processing math: 100%

Identifier
Values
[1] => ([],1) => 2
[1,2] => ([],2) => 2
[2,1] => ([(0,1)],2) => 2
[1,2,3] => ([],3) => 2
[1,3,2] => ([(1,2)],3) => 3
[2,1,3] => ([(1,2)],3) => 3
[2,3,1] => ([(0,2),(1,2)],3) => 3
[3,1,2] => ([(0,2),(1,2)],3) => 3
[3,2,1] => ([(0,1),(0,2),(1,2)],3) => 2
[1,2,3,4] => ([],4) => 2
[1,2,4,3] => ([(2,3)],4) => 3
[1,3,2,4] => ([(2,3)],4) => 3
[1,3,4,2] => ([(1,3),(2,3)],4) => 3
[1,4,2,3] => ([(1,3),(2,3)],4) => 3
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4) => 3
[2,1,3,4] => ([(2,3)],4) => 3
[2,1,4,3] => ([(0,3),(1,2)],4) => 3
[2,3,1,4] => ([(1,3),(2,3)],4) => 3
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4) => 3
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4) => 3
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 3
[3,1,2,4] => ([(1,3),(2,3)],4) => 3
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4) => 3
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4) => 3
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 3
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4) => 3
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4) => 3
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4) => 3
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4) => 3
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[1,2,3,4,5] => ([],5) => 2
[1,2,3,5,4] => ([(3,4)],5) => 3
[1,2,4,3,5] => ([(3,4)],5) => 3
[1,2,4,5,3] => ([(2,4),(3,4)],5) => 3
[1,2,5,3,4] => ([(2,4),(3,4)],5) => 3
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5) => 3
[1,3,2,4,5] => ([(3,4)],5) => 3
[1,3,2,5,4] => ([(1,4),(2,3)],5) => 3
[1,3,4,2,5] => ([(2,4),(3,4)],5) => 3
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5) => 3
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5) => 3
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[1,4,2,3,5] => ([(2,4),(3,4)],5) => 3
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5) => 3
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5) => 3
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5) => 3
[1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5) => 3
[1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[2,1,3,4,5] => ([(3,4)],5) => 3
[2,1,3,5,4] => ([(1,4),(2,3)],5) => 3
[2,1,4,3,5] => ([(1,4),(2,3)],5) => 3
[2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5) => 3
[2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5) => 3
[2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5) => 3
[2,3,1,4,5] => ([(2,4),(3,4)],5) => 3
[2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5) => 3
[2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5) => 3
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5) => 3
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5) => 3
[2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 3
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 3
[2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 4
[2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 3
[2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[3,1,2,4,5] => ([(2,4),(3,4)],5) => 3
[3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5) => 3
[3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5) => 3
[3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
[3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5) => 3
[3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 3
[3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5) => 3
[3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5) => 3
[3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 3
[3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 3
[3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5) => 3
[3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 3
[3,4,2,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 3
[3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 3
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 3
>>> Load all 154 entries. <<<
[3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 3
[3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 3
[3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => 3
[3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5) => 3
[4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
[4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[4,1,3,5,2] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 4
[4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 3
[4,1,5,3,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 3
[4,2,1,3,5] => ([(1,4),(2,3),(2,4),(3,4)],5) => 4
[4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 3
[4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 3
[4,2,5,3,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 3
[4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 3
[4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => 3
[4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 3
[4,5,1,3,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => 3
[4,5,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => 3
[4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 3
[4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 3
[4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[5,1,2,4,3] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[5,1,3,2,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[5,1,3,4,2] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[5,1,4,3,2] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
[5,2,1,4,3] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 3
[5,2,3,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[5,2,4,1,3] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 3
[5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[5,3,1,4,2] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 3
[5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 3
[5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[5,4,1,3,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[] => ([],0) => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The minimal order of a graph which is not an induced subgraph of the given graph.
For example, the graph with two isolated vertices is not an induced subgraph of the complete graph on three vertices.
By contrast, the minimal number of vertices of a graph which is not a subgraph of a graph is one plus the clique number St000097The order of the largest clique of the graph..
Map
graph of inversions
Description
The graph of inversions of a permutation.
For a permutation of {1,,n}, this is the graph with vertices {1,,n}, where (i,j) is an edge if and only if it is an inversion of the permutation.