Identifier
Values
['A',1] => ([],1) => ([],1) => ([(0,1)],2) => 2
['A',2] => ([(0,2),(1,2)],3) => ([(1,2)],3) => ([(0,3),(1,2),(1,3),(2,3)],4) => 3
['B',2] => ([(0,3),(1,3),(3,2)],4) => ([(2,3)],4) => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The minimal order of a graph which is not an induced subgraph of the given graph.
For example, the graph with two isolated vertices is not an induced subgraph of the complete graph on three vertices.
By contrast, the minimal number of vertices of a graph which is not a subgraph of a graph is one plus the clique number St000097The order of the largest clique of the graph..
For example, the graph with two isolated vertices is not an induced subgraph of the complete graph on three vertices.
By contrast, the minimal number of vertices of a graph which is not a subgraph of a graph is one plus the clique number St000097The order of the largest clique of the graph..
Map
to root poset
Description
The root poset of a finite Cartan type.
This is the poset on the set of positive roots of its root system where $\alpha \prec \beta$ if $\beta - \alpha$ is a simple root.
This is the poset on the set of positive roots of its root system where $\alpha \prec \beta$ if $\beta - \alpha$ is a simple root.
Map
cone
Description
The cone of a graph.
The cone of a graph is obtained by joining a new vertex to all the vertices of the graph. The added vertex is called a universal vertex or a dominating vertex.
The cone of a graph is obtained by joining a new vertex to all the vertices of the graph. The added vertex is called a universal vertex or a dominating vertex.
Map
incomparability graph
Description
The incomparability graph of a poset.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!