Identifier
-
Mp00199:
Dyck paths
—prime Dyck path⟶
Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
St001744: Permutations ⟶ ℤ
Values
[1,0] => [1,1,0,0] => [1,0,1,0] => [1,2] => 0
[1,0,1,0] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => [2,1,3] => 0
[1,1,0,0] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => [1,2,3] => 0
[1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0] => [3,1,2,4] => 1
[1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0] => [1,3,2,4] => 0
[1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0] => [2,3,1,4] => 0
[1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,0] => [2,1,3,4] => 0
[1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => [4,1,2,3,5] => 2
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => [1,4,2,3,5] => 1
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [2,4,1,3,5] => 1
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0] => [2,1,4,3,5] => 0
[1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,2,4,3,5] => 0
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => [3,4,1,2,5] => 1
[1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => [2,3,4,1,5] => 0
[1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,0] => [3,1,4,2,5] => 0
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => [3,1,2,4,5] => 1
[1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,3,2,4,5] => 0
[1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0] => [1,3,4,2,5] => 0
[1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => [2,3,1,4,5] => 0
[1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => [2,1,3,4,5] => 0
[1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => [5,1,2,3,4,6] => 3
[1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,5,2,3,4,6] => 2
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,0,0,1,0] => [2,5,1,3,4,6] => 2
[1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => [2,1,5,3,4,6] => 1
[1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,2,5,3,4,6] => 1
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [1,1,1,0,1,1,0,0,0,0,1,0] => [3,5,1,2,4,6] => 2
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,0,0,1,0] => [2,3,5,1,4,6] => 1
[1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [1,1,1,0,0,1,1,0,0,0,1,0] => [3,1,5,2,4,6] => 1
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => [3,1,2,5,4,6] => 1
[1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,3,2,5,4,6] => 0
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,1,0,1,1,0,0,0,1,0] => [1,3,5,2,4,6] => 1
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [1,1,0,1,0,0,1,1,0,0,1,0] => [2,3,1,5,4,6] => 0
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => [2,1,3,5,4,6] => 0
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,2,3,5,4,6] => 0
[1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0] => [4,5,1,2,3,6] => 2
[1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,0,0,1,0] => [2,4,5,1,3,6] => 1
[1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => [3,4,5,1,2,6] => 1
[1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [1,1,1,0,0,1,0,1,0,0,1,0] => [3,1,4,5,2,6] => 0
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => [1,3,4,5,2,6] => 0
[1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0,1,0] => [4,1,5,2,3,6] => 1
[1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => [3,4,1,5,2,6] => 0
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0,1,0] => [4,1,2,5,3,6] => 1
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => [4,1,2,3,5,6] => 2
[1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,4,2,3,5,6] => 1
[1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0,1,0] => [1,4,2,5,3,6] => 0
[1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [1,1,0,1,1,0,0,0,1,0,1,0] => [2,4,1,3,5,6] => 1
[1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => [2,1,4,3,5,6] => 0
[1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,2,4,3,5,6] => 0
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => [1,4,5,2,3,6] => 1
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [2,3,4,5,1,6] => 0
[1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0,1,0] => [2,4,1,5,3,6] => 0
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => [3,4,1,2,5,6] => 1
[1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [2,3,4,1,5,6] => 0
[1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => [2,1,4,5,3,6] => 0
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [1,1,1,0,0,1,0,0,1,0,1,0] => [3,1,4,2,5,6] => 0
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => [3,1,2,4,5,6] => 1
[1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,3,2,4,5,6] => 0
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,2,4,5,3,6] => 0
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,3,4,2,5,6] => 0
[1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [2,3,1,4,5,6] => 0
[1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [2,1,3,4,5,6] => 0
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => 0
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0] => [1,2,6,3,4,5,7] => 2
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => [1,3,2,6,4,5,7] => 1
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,1,0,1,1,1,0,0,0,0,1,0] => [1,3,6,2,4,5,7] => 2
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [1,2,3,6,4,5,7] => 1
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,1,1,0,0,0,1,0] => [1,3,4,6,2,5,7] => 1
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => [1,4,2,3,6,5,7] => 1
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,1,1,0,0,0,1,0,0] => [1,0,1,1,1,0,0,1,1,0,0,0,1,0] => [1,4,2,6,3,5,7] => 1
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [1,2,4,3,6,5,7] => 0
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,1,0,0] => [1,0,1,1,1,0,1,1,0,0,0,0,1,0] => [1,4,6,2,3,5,7] => 2
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => [1,3,2,4,6,5,7] => 0
[1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0] => [1,2,4,6,3,5,7] => 1
[1,0,1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,1,1,1,0,0,0,1,0,0,0] => [1,0,1,1,0,1,0,0,1,1,0,0,1,0] => [1,3,4,2,6,5,7] => 0
[1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,2,3,4,6,5,7] => 0
[1,1,0,0,1,0,1,1,1,0,0,0] => [1,1,1,0,0,1,0,1,1,1,0,0,0,0] => [1,0,1,1,0,1,1,0,1,0,0,0,1,0] => [1,3,5,6,2,4,7] => 1
[1,1,0,0,1,1,0,1,1,0,0,0] => [1,1,1,0,0,1,1,0,1,1,0,0,0,0] => [1,0,1,1,1,0,0,1,0,1,0,0,1,0] => [1,4,2,5,6,3,7] => 0
[1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,1,0,0] => [1,0,1,1,1,0,1,0,1,0,0,0,1,0] => [1,4,5,6,2,3,7] => 1
[1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,1,0,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0,1,0] => [1,2,4,5,6,3,7] => 0
[1,1,0,1,0,0,1,1,1,0,0,0] => [1,1,1,0,1,0,0,1,1,1,0,0,0,0] => [1,0,1,1,1,0,1,0,0,1,0,0,1,0] => [1,4,5,2,6,3,7] => 0
[1,1,0,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0] => [1,2,5,3,4,6,7] => 1
[1,1,0,1,1,0,1,1,0,0,0,0] => [1,1,1,0,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0] => [1,3,2,5,4,6,7] => 0
[1,1,0,1,1,1,0,0,0,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,1,0,0] => [1,0,1,0,1,1,1,0,0,1,0,0,1,0] => [1,2,5,3,6,4,7] => 0
[1,1,0,1,1,1,0,0,0,1,0,0] => [1,1,1,0,1,1,1,0,0,0,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0,1,0,1,0] => [1,3,5,2,4,6,7] => 1
[1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,2,3,5,4,6,7] => 0
[1,1,1,0,0,1,1,1,0,0,0,0] => [1,1,1,1,0,0,1,1,1,0,0,0,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0,1,0] => [1,3,4,5,2,6,7] => 0
[1,1,1,0,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,0,1,1,0,0,0,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0] => [1,4,2,3,5,6,7] => 1
[1,1,1,0,1,1,0,0,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,1,0,0,1,0] => [1,3,2,5,6,4,7] => 0
[1,1,1,0,1,1,0,0,0,1,0,0] => [1,1,1,1,0,1,1,0,0,0,1,0,0,0] => [1,0,1,1,1,0,0,1,0,0,1,0,1,0] => [1,4,2,5,3,6,7] => 0
[1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,1,1,0,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,2,4,3,5,6,7] => 0
[1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,1,0,0] => [1,0,1,0,1,1,1,0,1,0,0,0,1,0] => [1,2,5,6,3,4,7] => 1
[1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,1,0,1,0,0,1,0] => [1,3,4,5,6,2,7] => 0
[1,1,1,1,0,0,0,1,0,0,1,0] => [1,1,1,1,1,0,0,0,1,0,0,1,0,0] => [1,0,1,1,0,1,1,0,0,1,0,0,1,0] => [1,3,5,2,6,4,7] => 0
[1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,1,0,0,0] => [1,0,1,1,1,0,1,0,0,0,1,0,1,0] => [1,4,5,2,3,6,7] => 1
[1,1,1,1,0,1,1,0,0,0,0,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,3,2,4,5,6,7] => 0
[1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0] => [1,2,3,5,6,4,7] => 0
[1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,1,1,1,1,0,0,0,0,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0] => [1,2,4,5,3,6,7] => 0
[1,1,1,1,1,0,0,0,1,0,0,0] => [1,1,1,1,1,1,0,0,0,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0,1,0] => [1,3,4,2,5,6,7] => 0
[1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6,7] => 0
>>> Load all 102 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation.
Let $\nu$ be a (partial) permutation of $[k]$ with $m$ letters together with dashes between some of its letters. An occurrence of $\nu$ in a permutation $\tau$ is a subsequence $\tau_{a_1},\dots,\tau_{a_m}$
such that $a_i + 1 = a_{i+1}$ whenever there is a dash between the $i$-th and the $(i+1)$-st letter of $\nu$, which is order isomorphic to $\nu$.
Thus, $\nu$ is a vincular pattern, except that it is not required to be a permutation.
An arrow pattern of size $k$ consists of such a generalized vincular pattern $\nu$ and arrows $b_1\to c_1, b_2\to c_2,\dots$, such that precisely the numbers $1,\dots,k$ appear in the vincular pattern and the arrows.
Let $\Phi$ be the map Mp00087inverse first fundamental transformation. Let $\tau$ be a permutation and $\sigma = \Phi(\tau)$. Then a subsequence $w = (x_{a_1},\dots,x_{a_m})$ of $\tau$ is an occurrence of the arrow pattern if $w$ is an occurrence of $\nu$, for each arrow $b\to c$ we have $\sigma(x_b) = x_c$ and $x_1 < x_2 < \dots < x_k$.
Let $\nu$ be a (partial) permutation of $[k]$ with $m$ letters together with dashes between some of its letters. An occurrence of $\nu$ in a permutation $\tau$ is a subsequence $\tau_{a_1},\dots,\tau_{a_m}$
such that $a_i + 1 = a_{i+1}$ whenever there is a dash between the $i$-th and the $(i+1)$-st letter of $\nu$, which is order isomorphic to $\nu$.
Thus, $\nu$ is a vincular pattern, except that it is not required to be a permutation.
An arrow pattern of size $k$ consists of such a generalized vincular pattern $\nu$ and arrows $b_1\to c_1, b_2\to c_2,\dots$, such that precisely the numbers $1,\dots,k$ appear in the vincular pattern and the arrows.
Let $\Phi$ be the map Mp00087inverse first fundamental transformation. Let $\tau$ be a permutation and $\sigma = \Phi(\tau)$. Then a subsequence $w = (x_{a_1},\dots,x_{a_m})$ of $\tau$ is an occurrence of the arrow pattern if $w$ is an occurrence of $\nu$, for each arrow $b\to c$ we have $\sigma(x_b) = x_c$ and $x_1 < x_2 < \dots < x_k$.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
zeta map
Description
The zeta map on Dyck paths.
The zeta map $\zeta$ is a bijection on Dyck paths of semilength $n$.
It was defined in [1, Theorem 1], see also [2, Theorem 3.15] and sends the bistatistic (area, dinv) to the bistatistic (bounce, area). It is defined by sending a Dyck path $D$ with corresponding area sequence $a=(a_1,\ldots,a_n)$ to a Dyck path as follows:
The zeta map $\zeta$ is a bijection on Dyck paths of semilength $n$.
It was defined in [1, Theorem 1], see also [2, Theorem 3.15] and sends the bistatistic (area, dinv) to the bistatistic (bounce, area). It is defined by sending a Dyck path $D$ with corresponding area sequence $a=(a_1,\ldots,a_n)$ to a Dyck path as follows:
- First, build an intermediate Dyck path consisting of $d_1$ north steps, followed by $d_1$ east steps, followed by $d_2$ north steps and $d_2$ east steps, and so on, where $d_i$ is the number of $i-1$'s within the sequence $a$.
For example, given $a=(0,1,2,2,2,3,1,2)$, we build the path
$$NE\ NNEE\ NNNNEEEE\ NE.$$ - Next, the rectangles between two consecutive peaks are filled. Observe that such the rectangle between the $k$th and the $(k+1)$st peak must be filled by $d_k$ east steps and $d_{k+1}$ north steps. In the above example, the rectangle between the second and the third peak must be filled by $2$ east and $4$ north steps, the $2$ being the number of $1$'s in $a$, and $4$ being the number of $2$'s. To fill such a rectangle, scan through the sequence a from left to right, and add east or north steps whenever you see a $k-1$ or $k$, respectively. So to fill the $2\times 4$ rectangle, we look for $1$'s and $2$'s in the sequence and see $122212$, so this rectangle gets filled with $ENNNEN$.
The complete path we obtain in thus
$$NENNENNNENEEENEE.$$
Map
to 321-avoiding permutation (Krattenthaler)
Description
Krattenthaler's bijection to 321-avoiding permutations.
Draw the path of semilength $n$ in an $n\times n$ square matrix, starting at the upper left corner, with right and down steps, and staying below the diagonal. Then the permutation matrix is obtained by placing ones into the cells corresponding to the peaks of the path and placing ones into the remaining columns from left to right, such that the row indices of the cells increase.
Draw the path of semilength $n$ in an $n\times n$ square matrix, starting at the upper left corner, with right and down steps, and staying below the diagonal. Then the permutation matrix is obtained by placing ones into the cells corresponding to the peaks of the path and placing ones into the remaining columns from left to right, such that the row indices of the cells increase.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!