Values
=>
Cc0029;cc-rep
([],1)=>1
([(0,1)],2)=>2
([(0,2),(2,1)],3)=>5
([(0,1),(0,2),(1,3),(2,3)],4)=>4
([(0,3),(2,1),(3,2)],4)=>14
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)=>2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)=>5
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)=>13
([(0,4),(2,3),(3,1),(4,2)],5)=>42
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)=>13
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)=>2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)=>3
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)=>3
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)=>8
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)=>17
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)=>48
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)=>8
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)=>42
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)=>3
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)=>42
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)=>8
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)=>7
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)=>10
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)=>132
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)=>17
([],0)=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of tolerances of a finite lattice.
Let $L$ be a lattice. A tolerance $\tau$ is a reflexive and symmetric relation on $L$ which is compatible with meet and join. Equivalently, a tolerance of $L$ is the image of a congruence by a surjective lattice homomorphism onto $L$.
The number of tolerances of a chain of $n$ elements is the Catalan number $\frac{1}{n+1}\binom{2n}{n}$, see [2].
Let $L$ be a lattice. A tolerance $\tau$ is a reflexive and symmetric relation on $L$ which is compatible with meet and join. Equivalently, a tolerance of $L$ is the image of a congruence by a surjective lattice homomorphism onto $L$.
The number of tolerances of a chain of $n$ elements is the Catalan number $\frac{1}{n+1}\binom{2n}{n}$, see [2].
References
[1] Chajda, I., Zelinka, B. Tolerance relation on lattices MathSciNet:0360380
[2] Bandelt, H.-J. Tolerante Catalanzahlen MathSciNet:0725192
[2] Bandelt, H.-J. Tolerante Catalanzahlen MathSciNet:0725192
Code
def is_tolerance(t, L): # reflexive: if not all((e, e) in t for e in L): return False # symmetric: if not all((f, e) in t for e, f in t): return False # compatible: for (x, y), (z, u) in Subsets(t, 2): # join: if not (L.join(x, z), L.join(y, u)) in t: return False if not (L.meet(x, z), L.meet(y, u)) in t: return False return True # extremely stupid code def all_tolerances_iter(L): n = Subsets(Subsets(L, 2)).cardinality() if n > 2^15: raise ValueError("%s too large (%s)" % (L, n)) for t0 in Subsets(Subsets(L, 2)): t = [tuple(x) for x in t0] t.extend((e, e) for e in L) t.extend((f, e) for e, f in t0) assert len(set(t)) == len(t) if is_tolerance(t, L): yield t def all_tolerances(L): """ sage: from sage.databases.findstat import _finite_lattices sage: [len(all_tolerances(L)) for L in _finite_lattices(6)] [2, 5, 13, 42, 13] """ return list(all_tolerances_iter(L)) @cached_function def statistic(L): return len(all_tolerances(L))
Created
Dec 13, 2021 at 11:51 by Martin Rubey
Updated
Dec 13, 2021 at 11:51 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!