Identifier
Values
[[1,2]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[2,2]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[1],[2]] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[1,3]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[2,3]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[3,3]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[1],[3]] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[2],[3]] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[1,2],[2]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1,4]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[2,4]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[3,4]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[4,4]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[1],[4]] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[2],[4]] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[3],[4]] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[1,3],[2]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1,3],[3]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[2,3],[3]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1],[2],[3]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1,1],[2,2]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,5]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[2,5]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[3,5]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[4,5]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[5,5]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[1],[5]] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[2],[5]] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[3],[5]] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[4],[5]] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[1,4],[2]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1,4],[3]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1,4],[4]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[2,4],[3]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[2,4],[4]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[3,4],[4]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1],[2],[4]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1],[3],[4]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[2],[3],[4]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1,1],[2,3]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,1],[3,3]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,2],[3,3]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[2,2],[3,3]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,6]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[2,6]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[3,6]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[4,6]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[5,6]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[6,6]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[1],[6]] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[2],[6]] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[3],[6]] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[4],[6]] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[5],[6]] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[1,5],[2]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1,5],[3]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1,5],[4]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1,5],[5]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[2,5],[3]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[2,5],[4]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[2,5],[5]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[3,5],[4]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[3,5],[5]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[4,5],[5]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1],[2],[5]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1],[3],[5]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1],[4],[5]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[2],[3],[5]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[2],[4],[5]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[3],[4],[5]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1,1],[2,4]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,1],[3,4]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,1],[4,4]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,2],[3,4]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,2],[4,4]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,3],[4,4]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[2,2],[3,4]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[2,2],[4,4]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[2,3],[4,4]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[3,3],[4,4]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,7]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[2,7]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[3,7]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[4,7]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[5,7]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[6,7]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[7,7]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[1],[7]] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[2],[7]] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[3],[7]] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[4],[7]] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[5],[7]] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[6],[7]] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[1,6],[2]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1,6],[3]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1,6],[4]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1,6],[5]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1,6],[6]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[2,6],[3]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[2,6],[4]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[2,6],[5]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
>>> Load all 231 entries. <<<
[[2,6],[6]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[3,6],[4]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[3,6],[5]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[3,6],[6]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[4,6],[5]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[4,6],[6]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[5,6],[6]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1],[2],[6]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1],[3],[6]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1],[4],[6]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1],[5],[6]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[2],[3],[6]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[2],[4],[6]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[2],[5],[6]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[3],[4],[6]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[3],[5],[6]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[4],[5],[6]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1,1],[2,5]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,1],[3,5]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,1],[4,5]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,1],[5,5]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,2],[3,5]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,2],[4,5]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,2],[5,5]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,3],[4,5]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,3],[5,5]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,4],[5,5]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[2,2],[3,5]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[2,2],[4,5]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[2,2],[5,5]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[2,3],[4,5]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[2,3],[5,5]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[2,4],[5,5]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[3,3],[4,5]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[3,3],[5,5]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[3,4],[5,5]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[4,4],[5,5]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,8]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[2,8]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[3,8]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[4,8]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[5,8]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[6,8]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[7,8]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[8,8]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[1],[8]] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[2],[8]] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[3],[8]] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[4],[8]] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[5],[8]] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[6],[8]] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[7],[8]] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[1,7],[2]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1,7],[3]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1,7],[4]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1,7],[5]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1,7],[6]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1,7],[7]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[2,7],[3]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[2,7],[4]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[2,7],[5]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[2,7],[6]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[2,7],[7]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[3,7],[4]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[3,7],[5]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[3,7],[6]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[3,7],[7]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[4,7],[5]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[4,7],[6]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[4,7],[7]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[5,7],[6]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[5,7],[7]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[6,7],[7]] => [2,1,3] => [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1],[2],[7]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1],[3],[7]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1],[4],[7]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1],[5],[7]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1],[6],[7]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[2],[3],[7]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[2],[4],[7]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[2],[5],[7]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[2],[6],[7]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[3],[4],[7]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[3],[5],[7]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[3],[6],[7]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[4],[5],[7]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[4],[6],[7]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[5],[6],[7]] => [3,2,1] => [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[1,1],[2,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,1],[3,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,1],[4,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,1],[5,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,1],[6,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,2],[3,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,2],[4,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,2],[5,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,2],[6,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,3],[4,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,3],[5,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,3],[6,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,4],[5,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,4],[6,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1,5],[6,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[2,2],[3,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[2,2],[4,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[2,2],[5,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[2,2],[6,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[2,3],[4,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[2,3],[5,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[2,3],[6,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[2,4],[5,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[2,4],[6,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[2,5],[6,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[3,3],[4,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[3,3],[5,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[3,3],[6,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[3,4],[5,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[3,4],[6,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[3,5],[6,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[4,4],[5,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[4,4],[6,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[4,5],[6,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[5,5],[6,6]] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[1]] => [1] => [1] => ([(0,1)],2) => 2
[[2]] => [1] => [1] => ([(0,1)],2) => 2
[[1,1]] => [1,2] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[[3]] => [1] => [1] => ([(0,1)],2) => 2
[[4]] => [1] => [1] => ([(0,1)],2) => 2
[[5]] => [1] => [1] => ([(0,1)],2) => 2
[[6]] => [1] => [1] => ([(0,1)],2) => 2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of tolerances of a finite lattice.
Let $L$ be a lattice. A tolerance $\tau$ is a reflexive and symmetric relation on $L$ which is compatible with meet and join. Equivalently, a tolerance of $L$ is the image of a congruence by a surjective lattice homomorphism onto $L$.
The number of tolerances of a chain of $n$ elements is the Catalan number $\frac{1}{n+1}\binom{2n}{n}$, see [2].
Map
lattice of intervals
Description
The lattice of intervals of a permutation.
An interval of a permutation $\pi$ is a possibly empty interval of values that appear in consecutive positions of $\pi$. The lattice of intervals of $\pi$ has as elements the intervals of $\pi$, ordered by set inclusion.
Map
reading word permutation
Description
Return the permutation obtained by reading the entries of the tableau row by row, starting with the bottommost row (in English notation).
Map
inverse first fundamental transformation
Description
Let $\sigma = (i_{11}\cdots i_{1k_1})\cdots(i_{\ell 1}\cdots i_{\ell k_\ell})$ be a permutation given by cycle notation such that every cycle starts with its maximal entry, and all cycles are ordered increasingly by these maximal entries.
Maps $\sigma$ to the permutation $[i_{11},\ldots,i_{1k_1},\ldots,i_{\ell 1},\ldots,i_{\ell k_\ell}]$ in one-line notation.
In other words, this map sends the maximal entries of the cycles to the left-to-right maxima, and the sequences between two left-to-right maxima are given by the cycles.