Identifier
Values
0 => ([(0,1)],2) => ([(0,1)],2) => ([(0,1)],2) => 0
1 => ([(0,1)],2) => ([(0,1)],2) => ([(0,1)],2) => 0
00 => ([(0,2),(2,1)],3) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 0
01 => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => 1
10 => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => 1
11 => ([(0,2),(2,1)],3) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 0
000 => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => 0
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => 1
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => 0
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => 1
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => 1
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => 0
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => 1
111 => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => 0
0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 0
1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 0
00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The binary logarithm of the evaluation of the Tutte polynomial of the graph at (x,y) equal to (-1,-1).
Map
to graph
Description
Returns the Hasse diagram of the poset as an undirected graph.
Map
connected complement
Description
The componentwise connected complement of a graph.
For a connected graph $G$, this map returns the complement of $G$ if it is connected, otherwise $G$ itself. If $G$ is not connected, the map is applied to each connected component separately.
For a connected graph $G$, this map returns the complement of $G$ if it is connected, otherwise $G$ itself. If $G$ is not connected, the map is applied to each connected component separately.
Map
poset of factors
Description
The poset of factors of a binary word.
This is the partial order on the set of distinct factors of a binary word, such that $u < v$ if and only if $u$ is a factor of $v$.
This is the partial order on the set of distinct factors of a binary word, such that $u < v$ if and only if $u$ is a factor of $v$.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!