Identifier
Values
[[1]] => 1
[[1,2]] => 1
[[1],[2]] => 1
[[1,2,3]] => 1
[[1,3],[2]] => 2
[[1,2],[3]] => 1
[[1],[2],[3]] => 1
[[1,2,3,4]] => 1
[[1,3,4],[2]] => 2
[[1,2,4],[3]] => 2
[[1,2,3],[4]] => 1
[[1,3],[2,4]] => 2
[[1,2],[3,4]] => 1
[[1,4],[2],[3]] => 3
[[1,3],[2],[4]] => 2
[[1,2],[3],[4]] => 2
[[1],[2],[3],[4]] => 1
[[1,2,3,4,5]] => 1
[[1,3,4,5],[2]] => 2
[[1,2,4,5],[3]] => 2
[[1,2,3,5],[4]] => 2
[[1,2,3,4],[5]] => 1
[[1,3,5],[2,4]] => 2
[[1,2,5],[3,4]] => 2
[[1,3,4],[2,5]] => 2
[[1,2,4],[3,5]] => 2
[[1,2,3],[4,5]] => 1
[[1,4,5],[2],[3]] => 3
[[1,3,5],[2],[4]] => 3
[[1,2,5],[3],[4]] => 3
[[1,3,4],[2],[5]] => 2
[[1,2,4],[3],[5]] => 2
[[1,2,3],[4],[5]] => 2
[[1,4],[2,5],[3]] => 3
[[1,3],[2,5],[4]] => 2
[[1,2],[3,5],[4]] => 1
[[1,3],[2,4],[5]] => 2
[[1,2],[3,4],[5]] => 1
[[1,5],[2],[3],[4]] => 4
[[1,4],[2],[3],[5]] => 3
[[1,3],[2],[4],[5]] => 3
[[1,2],[3],[4],[5]] => 3
[[1],[2],[3],[4],[5]] => 1
[[1,2,3,4,5,6]] => 1
[[1,3,4,5,6],[2]] => 2
[[1,2,4,5,6],[3]] => 2
[[1,2,3,5,6],[4]] => 2
[[1,2,3,4,6],[5]] => 2
[[1,2,3,4,5],[6]] => 1
[[1,3,5,6],[2,4]] => 2
[[1,2,5,6],[3,4]] => 2
[[1,3,4,6],[2,5]] => 2
[[1,2,4,6],[3,5]] => 2
[[1,2,3,6],[4,5]] => 2
[[1,3,4,5],[2,6]] => 2
[[1,2,4,5],[3,6]] => 2
[[1,2,3,5],[4,6]] => 2
[[1,2,3,4],[5,6]] => 1
[[1,4,5,6],[2],[3]] => 3
[[1,3,5,6],[2],[4]] => 3
[[1,2,5,6],[3],[4]] => 3
[[1,3,4,6],[2],[5]] => 3
[[1,2,4,6],[3],[5]] => 3
[[1,2,3,6],[4],[5]] => 3
[[1,3,4,5],[2],[6]] => 2
[[1,2,4,5],[3],[6]] => 2
[[1,2,3,5],[4],[6]] => 2
[[1,2,3,4],[5],[6]] => 2
[[1,3,5],[2,4,6]] => 2
[[1,2,5],[3,4,6]] => 2
[[1,3,4],[2,5,6]] => 2
[[1,2,4],[3,5,6]] => 2
[[1,2,3],[4,5,6]] => 1
[[1,4,6],[2,5],[3]] => 3
[[1,3,6],[2,5],[4]] => 3
[[1,2,6],[3,5],[4]] => 3
[[1,3,6],[2,4],[5]] => 3
[[1,2,6],[3,4],[5]] => 3
[[1,4,5],[2,6],[3]] => 3
[[1,3,5],[2,6],[4]] => 3
[[1,2,5],[3,6],[4]] => 3
[[1,3,4],[2,6],[5]] => 2
[[1,2,4],[3,6],[5]] => 2
[[1,2,3],[4,6],[5]] => 2
[[1,3,5],[2,4],[6]] => 2
[[1,2,5],[3,4],[6]] => 2
[[1,3,4],[2,5],[6]] => 2
[[1,2,4],[3,5],[6]] => 2
[[1,2,3],[4,5],[6]] => 2
[[1,5,6],[2],[3],[4]] => 4
[[1,4,6],[2],[3],[5]] => 4
[[1,3,6],[2],[4],[5]] => 4
[[1,2,6],[3],[4],[5]] => 4
[[1,4,5],[2],[3],[6]] => 3
[[1,3,5],[2],[4],[6]] => 3
[[1,2,5],[3],[4],[6]] => 3
[[1,3,4],[2],[5],[6]] => 3
[[1,2,4],[3],[5],[6]] => 3
[[1,2,3],[4],[5],[6]] => 3
[[1,4],[2,5],[3,6]] => 3
[[1,3],[2,5],[4,6]] => 2
>>> Load all 1115 entries. <<<[[1,2],[3,5],[4,6]] => 1
[[1,3],[2,4],[5,6]] => 2
[[1,2],[3,4],[5,6]] => 1
[[1,5],[2,6],[3],[4]] => 4
[[1,4],[2,6],[3],[5]] => 3
[[1,3],[2,6],[4],[5]] => 2
[[1,2],[3,6],[4],[5]] => 2
[[1,4],[2,5],[3],[6]] => 3
[[1,3],[2,5],[4],[6]] => 2
[[1,2],[3,5],[4],[6]] => 2
[[1,3],[2,4],[5],[6]] => 2
[[1,2],[3,4],[5],[6]] => 2
[[1,6],[2],[3],[4],[5]] => 5
[[1,5],[2],[3],[4],[6]] => 4
[[1,4],[2],[3],[5],[6]] => 4
[[1,3],[2],[4],[5],[6]] => 4
[[1,2],[3],[4],[5],[6]] => 4
[[1],[2],[3],[4],[5],[6]] => 1
[[1,2,3,4,5,6,7]] => 1
[[1,3,4,5,6,7],[2]] => 2
[[1,2,4,5,6,7],[3]] => 2
[[1,2,3,5,6,7],[4]] => 2
[[1,2,3,4,6,7],[5]] => 2
[[1,2,3,4,5,7],[6]] => 2
[[1,2,3,4,5,6],[7]] => 1
[[1,3,5,6,7],[2,4]] => 2
[[1,2,5,6,7],[3,4]] => 2
[[1,3,4,6,7],[2,5]] => 2
[[1,2,4,6,7],[3,5]] => 2
[[1,2,3,6,7],[4,5]] => 2
[[1,3,4,5,7],[2,6]] => 2
[[1,2,4,5,7],[3,6]] => 2
[[1,2,3,5,7],[4,6]] => 2
[[1,2,3,4,7],[5,6]] => 2
[[1,3,4,5,6],[2,7]] => 2
[[1,2,4,5,6],[3,7]] => 2
[[1,2,3,5,6],[4,7]] => 2
[[1,2,3,4,6],[5,7]] => 2
[[1,2,3,4,5],[6,7]] => 1
[[1,4,5,6,7],[2],[3]] => 3
[[1,3,5,6,7],[2],[4]] => 3
[[1,2,5,6,7],[3],[4]] => 3
[[1,3,4,6,7],[2],[5]] => 3
[[1,2,4,6,7],[3],[5]] => 3
[[1,2,3,6,7],[4],[5]] => 3
[[1,3,4,5,7],[2],[6]] => 3
[[1,2,4,5,7],[3],[6]] => 3
[[1,2,3,5,7],[4],[6]] => 3
[[1,2,3,4,7],[5],[6]] => 3
[[1,3,4,5,6],[2],[7]] => 2
[[1,2,4,5,6],[3],[7]] => 2
[[1,2,3,5,6],[4],[7]] => 2
[[1,2,3,4,6],[5],[7]] => 2
[[1,2,3,4,5],[6],[7]] => 2
[[1,3,5,7],[2,4,6]] => 2
[[1,2,5,7],[3,4,6]] => 2
[[1,3,4,7],[2,5,6]] => 2
[[1,2,4,7],[3,5,6]] => 2
[[1,2,3,7],[4,5,6]] => 2
[[1,3,5,6],[2,4,7]] => 2
[[1,2,5,6],[3,4,7]] => 2
[[1,3,4,6],[2,5,7]] => 2
[[1,2,4,6],[3,5,7]] => 2
[[1,2,3,6],[4,5,7]] => 2
[[1,3,4,5],[2,6,7]] => 2
[[1,2,4,5],[3,6,7]] => 2
[[1,2,3,5],[4,6,7]] => 2
[[1,2,3,4],[5,6,7]] => 1
[[1,4,6,7],[2,5],[3]] => 3
[[1,3,6,7],[2,5],[4]] => 3
[[1,2,6,7],[3,5],[4]] => 3
[[1,3,6,7],[2,4],[5]] => 3
[[1,2,6,7],[3,4],[5]] => 3
[[1,4,5,7],[2,6],[3]] => 3
[[1,3,5,7],[2,6],[4]] => 3
[[1,2,5,7],[3,6],[4]] => 3
[[1,3,4,7],[2,6],[5]] => 3
[[1,2,4,7],[3,6],[5]] => 3
[[1,2,3,7],[4,6],[5]] => 3
[[1,3,5,7],[2,4],[6]] => 3
[[1,2,5,7],[3,4],[6]] => 3
[[1,3,4,7],[2,5],[6]] => 3
[[1,2,4,7],[3,5],[6]] => 3
[[1,2,3,7],[4,5],[6]] => 3
[[1,4,5,6],[2,7],[3]] => 3
[[1,3,5,6],[2,7],[4]] => 3
[[1,2,5,6],[3,7],[4]] => 3
[[1,3,4,6],[2,7],[5]] => 3
[[1,2,4,6],[3,7],[5]] => 3
[[1,2,3,6],[4,7],[5]] => 3
[[1,3,4,5],[2,7],[6]] => 2
[[1,2,4,5],[3,7],[6]] => 2
[[1,2,3,5],[4,7],[6]] => 2
[[1,2,3,4],[5,7],[6]] => 2
[[1,3,5,6],[2,4],[7]] => 2
[[1,2,5,6],[3,4],[7]] => 2
[[1,3,4,6],[2,5],[7]] => 2
[[1,2,4,6],[3,5],[7]] => 2
[[1,2,3,6],[4,5],[7]] => 2
[[1,3,4,5],[2,6],[7]] => 2
[[1,2,4,5],[3,6],[7]] => 2
[[1,2,3,5],[4,6],[7]] => 2
[[1,2,3,4],[5,6],[7]] => 2
[[1,5,6,7],[2],[3],[4]] => 4
[[1,4,6,7],[2],[3],[5]] => 4
[[1,3,6,7],[2],[4],[5]] => 4
[[1,2,6,7],[3],[4],[5]] => 4
[[1,4,5,7],[2],[3],[6]] => 4
[[1,3,5,7],[2],[4],[6]] => 4
[[1,2,5,7],[3],[4],[6]] => 4
[[1,3,4,7],[2],[5],[6]] => 4
[[1,2,4,7],[3],[5],[6]] => 4
[[1,2,3,7],[4],[5],[6]] => 4
[[1,4,5,6],[2],[3],[7]] => 3
[[1,3,5,6],[2],[4],[7]] => 3
[[1,2,5,6],[3],[4],[7]] => 3
[[1,3,4,6],[2],[5],[7]] => 3
[[1,2,4,6],[3],[5],[7]] => 3
[[1,2,3,6],[4],[5],[7]] => 3
[[1,3,4,5],[2],[6],[7]] => 3
[[1,2,4,5],[3],[6],[7]] => 3
[[1,2,3,5],[4],[6],[7]] => 3
[[1,2,3,4],[5],[6],[7]] => 3
[[1,4,6],[2,5,7],[3]] => 3
[[1,3,6],[2,5,7],[4]] => 3
[[1,2,6],[3,5,7],[4]] => 3
[[1,3,6],[2,4,7],[5]] => 3
[[1,2,6],[3,4,7],[5]] => 3
[[1,4,5],[2,6,7],[3]] => 3
[[1,3,5],[2,6,7],[4]] => 3
[[1,2,5],[3,6,7],[4]] => 3
[[1,3,4],[2,6,7],[5]] => 2
[[1,2,4],[3,6,7],[5]] => 2
[[1,2,3],[4,6,7],[5]] => 1
[[1,3,5],[2,4,7],[6]] => 2
[[1,2,5],[3,4,7],[6]] => 2
[[1,3,4],[2,5,7],[6]] => 2
[[1,2,4],[3,5,7],[6]] => 2
[[1,2,3],[4,5,7],[6]] => 1
[[1,3,5],[2,4,6],[7]] => 2
[[1,2,5],[3,4,6],[7]] => 2
[[1,3,4],[2,5,6],[7]] => 2
[[1,2,4],[3,5,6],[7]] => 2
[[1,2,3],[4,5,6],[7]] => 1
[[1,4,7],[2,5],[3,6]] => 3
[[1,3,7],[2,5],[4,6]] => 3
[[1,2,7],[3,5],[4,6]] => 3
[[1,3,7],[2,4],[5,6]] => 3
[[1,2,7],[3,4],[5,6]] => 3
[[1,4,6],[2,5],[3,7]] => 3
[[1,3,6],[2,5],[4,7]] => 3
[[1,2,6],[3,5],[4,7]] => 3
[[1,3,6],[2,4],[5,7]] => 3
[[1,2,6],[3,4],[5,7]] => 3
[[1,4,5],[2,6],[3,7]] => 3
[[1,3,5],[2,6],[4,7]] => 3
[[1,2,5],[3,6],[4,7]] => 3
[[1,3,4],[2,6],[5,7]] => 2
[[1,2,4],[3,6],[5,7]] => 2
[[1,2,3],[4,6],[5,7]] => 2
[[1,3,5],[2,4],[6,7]] => 2
[[1,2,5],[3,4],[6,7]] => 2
[[1,3,4],[2,5],[6,7]] => 2
[[1,2,4],[3,5],[6,7]] => 2
[[1,2,3],[4,5],[6,7]] => 2
[[1,5,7],[2,6],[3],[4]] => 4
[[1,4,7],[2,6],[3],[5]] => 4
[[1,3,7],[2,6],[4],[5]] => 4
[[1,2,7],[3,6],[4],[5]] => 4
[[1,4,7],[2,5],[3],[6]] => 4
[[1,3,7],[2,5],[4],[6]] => 4
[[1,2,7],[3,5],[4],[6]] => 4
[[1,3,7],[2,4],[5],[6]] => 4
[[1,2,7],[3,4],[5],[6]] => 4
[[1,5,6],[2,7],[3],[4]] => 4
[[1,4,6],[2,7],[3],[5]] => 4
[[1,3,6],[2,7],[4],[5]] => 4
[[1,2,6],[3,7],[4],[5]] => 4
[[1,4,5],[2,7],[3],[6]] => 3
[[1,3,5],[2,7],[4],[6]] => 3
[[1,2,5],[3,7],[4],[6]] => 3
[[1,3,4],[2,7],[5],[6]] => 3
[[1,2,4],[3,7],[5],[6]] => 3
[[1,2,3],[4,7],[5],[6]] => 3
[[1,4,6],[2,5],[3],[7]] => 3
[[1,3,6],[2,5],[4],[7]] => 3
[[1,2,6],[3,5],[4],[7]] => 3
[[1,3,6],[2,4],[5],[7]] => 3
[[1,2,6],[3,4],[5],[7]] => 3
[[1,4,5],[2,6],[3],[7]] => 3
[[1,3,5],[2,6],[4],[7]] => 3
[[1,2,5],[3,6],[4],[7]] => 3
[[1,3,4],[2,6],[5],[7]] => 3
[[1,2,4],[3,6],[5],[7]] => 3
[[1,2,3],[4,6],[5],[7]] => 3
[[1,3,5],[2,4],[6],[7]] => 3
[[1,2,5],[3,4],[6],[7]] => 3
[[1,3,4],[2,5],[6],[7]] => 3
[[1,2,4],[3,5],[6],[7]] => 3
[[1,2,3],[4,5],[6],[7]] => 3
[[1,6,7],[2],[3],[4],[5]] => 5
[[1,5,7],[2],[3],[4],[6]] => 5
[[1,4,7],[2],[3],[5],[6]] => 5
[[1,3,7],[2],[4],[5],[6]] => 5
[[1,2,7],[3],[4],[5],[6]] => 5
[[1,5,6],[2],[3],[4],[7]] => 4
[[1,4,6],[2],[3],[5],[7]] => 4
[[1,3,6],[2],[4],[5],[7]] => 4
[[1,2,6],[3],[4],[5],[7]] => 4
[[1,4,5],[2],[3],[6],[7]] => 4
[[1,3,5],[2],[4],[6],[7]] => 4
[[1,2,5],[3],[4],[6],[7]] => 4
[[1,3,4],[2],[5],[6],[7]] => 4
[[1,2,4],[3],[5],[6],[7]] => 4
[[1,2,3],[4],[5],[6],[7]] => 4
[[1,5],[2,6],[3,7],[4]] => 4
[[1,4],[2,6],[3,7],[5]] => 3
[[1,3],[2,6],[4,7],[5]] => 2
[[1,2],[3,6],[4,7],[5]] => 1
[[1,4],[2,5],[3,7],[6]] => 3
[[1,3],[2,5],[4,7],[6]] => 2
[[1,2],[3,5],[4,7],[6]] => 1
[[1,3],[2,4],[5,7],[6]] => 2
[[1,2],[3,4],[5,7],[6]] => 1
[[1,4],[2,5],[3,6],[7]] => 3
[[1,3],[2,5],[4,6],[7]] => 2
[[1,2],[3,5],[4,6],[7]] => 1
[[1,3],[2,4],[5,6],[7]] => 2
[[1,2],[3,4],[5,6],[7]] => 1
[[1,6],[2,7],[3],[4],[5]] => 5
[[1,5],[2,7],[3],[4],[6]] => 4
[[1,4],[2,7],[3],[5],[6]] => 3
[[1,3],[2,7],[4],[5],[6]] => 3
[[1,2],[3,7],[4],[5],[6]] => 3
[[1,5],[2,6],[3],[4],[7]] => 4
[[1,4],[2,6],[3],[5],[7]] => 3
[[1,3],[2,6],[4],[5],[7]] => 3
[[1,2],[3,6],[4],[5],[7]] => 3
[[1,4],[2,5],[3],[6],[7]] => 3
[[1,3],[2,5],[4],[6],[7]] => 3
[[1,2],[3,5],[4],[6],[7]] => 3
[[1,3],[2,4],[5],[6],[7]] => 3
[[1,2],[3,4],[5],[6],[7]] => 3
[[1,7],[2],[3],[4],[5],[6]] => 6
[[1,6],[2],[3],[4],[5],[7]] => 5
[[1,5],[2],[3],[4],[6],[7]] => 5
[[1,4],[2],[3],[5],[6],[7]] => 5
[[1,3],[2],[4],[5],[6],[7]] => 5
[[1,2],[3],[4],[5],[6],[7]] => 5
[[1],[2],[3],[4],[5],[6],[7]] => 1
[[1,2,3,4,5,6,7,8]] => 1
[[1,3,4,5,6,7,8],[2]] => 2
[[1,2,4,5,6,7,8],[3]] => 2
[[1,2,3,5,6,7,8],[4]] => 2
[[1,2,3,4,6,7,8],[5]] => 2
[[1,2,3,4,5,7,8],[6]] => 2
[[1,2,3,4,5,6,8],[7]] => 2
[[1,2,3,4,5,6,7],[8]] => 1
[[1,3,5,6,7,8],[2,4]] => 2
[[1,2,5,6,7,8],[3,4]] => 2
[[1,3,4,6,7,8],[2,5]] => 2
[[1,2,4,6,7,8],[3,5]] => 2
[[1,2,3,6,7,8],[4,5]] => 2
[[1,3,4,5,7,8],[2,6]] => 2
[[1,2,4,5,7,8],[3,6]] => 2
[[1,2,3,5,7,8],[4,6]] => 2
[[1,2,3,4,7,8],[5,6]] => 2
[[1,3,4,5,6,8],[2,7]] => 2
[[1,2,4,5,6,8],[3,7]] => 2
[[1,2,3,5,6,8],[4,7]] => 2
[[1,2,3,4,6,8],[5,7]] => 2
[[1,2,3,4,5,8],[6,7]] => 2
[[1,3,4,5,6,7],[2,8]] => 2
[[1,2,4,5,6,7],[3,8]] => 2
[[1,2,3,5,6,7],[4,8]] => 2
[[1,2,3,4,6,7],[5,8]] => 2
[[1,2,3,4,5,7],[6,8]] => 2
[[1,2,3,4,5,6],[7,8]] => 1
[[1,4,5,6,7,8],[2],[3]] => 3
[[1,3,5,6,7,8],[2],[4]] => 3
[[1,2,5,6,7,8],[3],[4]] => 3
[[1,3,4,6,7,8],[2],[5]] => 3
[[1,2,4,6,7,8],[3],[5]] => 3
[[1,2,3,6,7,8],[4],[5]] => 3
[[1,3,4,5,7,8],[2],[6]] => 3
[[1,2,4,5,7,8],[3],[6]] => 3
[[1,2,3,5,7,8],[4],[6]] => 3
[[1,2,3,4,7,8],[5],[6]] => 3
[[1,3,4,5,6,8],[2],[7]] => 3
[[1,2,4,5,6,8],[3],[7]] => 3
[[1,2,3,5,6,8],[4],[7]] => 3
[[1,2,3,4,6,8],[5],[7]] => 3
[[1,2,3,4,5,8],[6],[7]] => 3
[[1,3,4,5,6,7],[2],[8]] => 2
[[1,2,4,5,6,7],[3],[8]] => 2
[[1,2,3,5,6,7],[4],[8]] => 2
[[1,2,3,4,6,7],[5],[8]] => 2
[[1,2,3,4,5,7],[6],[8]] => 2
[[1,2,3,4,5,6],[7],[8]] => 2
[[1,3,5,7,8],[2,4,6]] => 2
[[1,2,5,7,8],[3,4,6]] => 2
[[1,3,4,7,8],[2,5,6]] => 2
[[1,2,4,7,8],[3,5,6]] => 2
[[1,2,3,7,8],[4,5,6]] => 2
[[1,3,5,6,8],[2,4,7]] => 2
[[1,2,5,6,8],[3,4,7]] => 2
[[1,3,4,6,8],[2,5,7]] => 2
[[1,2,4,6,8],[3,5,7]] => 2
[[1,2,3,6,8],[4,5,7]] => 2
[[1,3,4,5,8],[2,6,7]] => 2
[[1,2,4,5,8],[3,6,7]] => 2
[[1,2,3,5,8],[4,6,7]] => 2
[[1,2,3,4,8],[5,6,7]] => 2
[[1,3,5,6,7],[2,4,8]] => 2
[[1,2,5,6,7],[3,4,8]] => 2
[[1,3,4,6,7],[2,5,8]] => 2
[[1,2,4,6,7],[3,5,8]] => 2
[[1,2,3,6,7],[4,5,8]] => 2
[[1,3,4,5,7],[2,6,8]] => 2
[[1,2,4,5,7],[3,6,8]] => 2
[[1,2,3,5,7],[4,6,8]] => 2
[[1,2,3,4,7],[5,6,8]] => 2
[[1,3,4,5,6],[2,7,8]] => 2
[[1,2,4,5,6],[3,7,8]] => 2
[[1,2,3,5,6],[4,7,8]] => 2
[[1,2,3,4,6],[5,7,8]] => 2
[[1,2,3,4,5],[6,7,8]] => 1
[[1,4,6,7,8],[2,5],[3]] => 3
[[1,3,6,7,8],[2,5],[4]] => 3
[[1,2,6,7,8],[3,5],[4]] => 3
[[1,3,6,7,8],[2,4],[5]] => 3
[[1,2,6,7,8],[3,4],[5]] => 3
[[1,4,5,7,8],[2,6],[3]] => 3
[[1,3,5,7,8],[2,6],[4]] => 3
[[1,2,5,7,8],[3,6],[4]] => 3
[[1,3,4,7,8],[2,6],[5]] => 3
[[1,2,4,7,8],[3,6],[5]] => 3
[[1,2,3,7,8],[4,6],[5]] => 3
[[1,3,5,7,8],[2,4],[6]] => 3
[[1,2,5,7,8],[3,4],[6]] => 3
[[1,3,4,7,8],[2,5],[6]] => 3
[[1,2,4,7,8],[3,5],[6]] => 3
[[1,2,3,7,8],[4,5],[6]] => 3
[[1,4,5,6,8],[2,7],[3]] => 3
[[1,3,5,6,8],[2,7],[4]] => 3
[[1,2,5,6,8],[3,7],[4]] => 3
[[1,3,4,6,8],[2,7],[5]] => 3
[[1,2,4,6,8],[3,7],[5]] => 3
[[1,2,3,6,8],[4,7],[5]] => 3
[[1,3,4,5,8],[2,7],[6]] => 3
[[1,2,4,5,8],[3,7],[6]] => 3
[[1,2,3,5,8],[4,7],[6]] => 3
[[1,2,3,4,8],[5,7],[6]] => 3
[[1,3,5,6,8],[2,4],[7]] => 3
[[1,2,5,6,8],[3,4],[7]] => 3
[[1,3,4,6,8],[2,5],[7]] => 3
[[1,2,4,6,8],[3,5],[7]] => 3
[[1,2,3,6,8],[4,5],[7]] => 3
[[1,3,4,5,8],[2,6],[7]] => 3
[[1,2,4,5,8],[3,6],[7]] => 3
[[1,2,3,5,8],[4,6],[7]] => 3
[[1,2,3,4,8],[5,6],[7]] => 3
[[1,4,5,6,7],[2,8],[3]] => 3
[[1,3,5,6,7],[2,8],[4]] => 3
[[1,2,5,6,7],[3,8],[4]] => 3
[[1,3,4,6,7],[2,8],[5]] => 3
[[1,2,4,6,7],[3,8],[5]] => 3
[[1,2,3,6,7],[4,8],[5]] => 3
[[1,3,4,5,7],[2,8],[6]] => 3
[[1,2,4,5,7],[3,8],[6]] => 3
[[1,2,3,5,7],[4,8],[6]] => 3
[[1,2,3,4,7],[5,8],[6]] => 3
[[1,3,4,5,6],[2,8],[7]] => 2
[[1,2,4,5,6],[3,8],[7]] => 2
[[1,2,3,5,6],[4,8],[7]] => 2
[[1,2,3,4,6],[5,8],[7]] => 2
[[1,2,3,4,5],[6,8],[7]] => 2
[[1,3,5,6,7],[2,4],[8]] => 2
[[1,2,5,6,7],[3,4],[8]] => 2
[[1,3,4,6,7],[2,5],[8]] => 2
[[1,2,4,6,7],[3,5],[8]] => 2
[[1,2,3,6,7],[4,5],[8]] => 2
[[1,3,4,5,7],[2,6],[8]] => 2
[[1,2,4,5,7],[3,6],[8]] => 2
[[1,2,3,5,7],[4,6],[8]] => 2
[[1,2,3,4,7],[5,6],[8]] => 2
[[1,3,4,5,6],[2,7],[8]] => 2
[[1,2,4,5,6],[3,7],[8]] => 2
[[1,2,3,5,6],[4,7],[8]] => 2
[[1,2,3,4,6],[5,7],[8]] => 2
[[1,2,3,4,5],[6,7],[8]] => 2
[[1,5,6,7,8],[2],[3],[4]] => 4
[[1,4,6,7,8],[2],[3],[5]] => 4
[[1,3,6,7,8],[2],[4],[5]] => 4
[[1,2,6,7,8],[3],[4],[5]] => 4
[[1,4,5,7,8],[2],[3],[6]] => 4
[[1,3,5,7,8],[2],[4],[6]] => 4
[[1,2,5,7,8],[3],[4],[6]] => 4
[[1,3,4,7,8],[2],[5],[6]] => 4
[[1,2,4,7,8],[3],[5],[6]] => 4
[[1,2,3,7,8],[4],[5],[6]] => 4
[[1,4,5,6,8],[2],[3],[7]] => 4
[[1,3,5,6,8],[2],[4],[7]] => 4
[[1,2,5,6,8],[3],[4],[7]] => 4
[[1,3,4,6,8],[2],[5],[7]] => 4
[[1,2,4,6,8],[3],[5],[7]] => 4
[[1,2,3,6,8],[4],[5],[7]] => 4
[[1,3,4,5,8],[2],[6],[7]] => 4
[[1,2,4,5,8],[3],[6],[7]] => 4
[[1,2,3,5,8],[4],[6],[7]] => 4
[[1,2,3,4,8],[5],[6],[7]] => 4
[[1,4,5,6,7],[2],[3],[8]] => 3
[[1,3,5,6,7],[2],[4],[8]] => 3
[[1,2,5,6,7],[3],[4],[8]] => 3
[[1,3,4,6,7],[2],[5],[8]] => 3
[[1,2,4,6,7],[3],[5],[8]] => 3
[[1,2,3,6,7],[4],[5],[8]] => 3
[[1,3,4,5,7],[2],[6],[8]] => 3
[[1,2,4,5,7],[3],[6],[8]] => 3
[[1,2,3,5,7],[4],[6],[8]] => 3
[[1,2,3,4,7],[5],[6],[8]] => 3
[[1,3,4,5,6],[2],[7],[8]] => 3
[[1,2,4,5,6],[3],[7],[8]] => 3
[[1,2,3,5,6],[4],[7],[8]] => 3
[[1,2,3,4,6],[5],[7],[8]] => 3
[[1,2,3,4,5],[6],[7],[8]] => 3
[[1,3,5,7],[2,4,6,8]] => 2
[[1,2,5,7],[3,4,6,8]] => 2
[[1,3,4,7],[2,5,6,8]] => 2
[[1,2,4,7],[3,5,6,8]] => 2
[[1,2,3,7],[4,5,6,8]] => 2
[[1,3,5,6],[2,4,7,8]] => 2
[[1,2,5,6],[3,4,7,8]] => 2
[[1,3,4,6],[2,5,7,8]] => 2
[[1,2,4,6],[3,5,7,8]] => 2
[[1,2,3,6],[4,5,7,8]] => 2
[[1,3,4,5],[2,6,7,8]] => 2
[[1,2,4,5],[3,6,7,8]] => 2
[[1,2,3,5],[4,6,7,8]] => 2
[[1,2,3,4],[5,6,7,8]] => 1
[[1,4,6,8],[2,5,7],[3]] => 3
[[1,3,6,8],[2,5,7],[4]] => 3
[[1,2,6,8],[3,5,7],[4]] => 3
[[1,3,6,8],[2,4,7],[5]] => 3
[[1,2,6,8],[3,4,7],[5]] => 3
[[1,4,5,8],[2,6,7],[3]] => 3
[[1,3,5,8],[2,6,7],[4]] => 3
[[1,2,5,8],[3,6,7],[4]] => 3
[[1,3,4,8],[2,6,7],[5]] => 3
[[1,2,4,8],[3,6,7],[5]] => 3
[[1,2,3,8],[4,6,7],[5]] => 3
[[1,3,5,8],[2,4,7],[6]] => 3
[[1,2,5,8],[3,4,7],[6]] => 3
[[1,3,4,8],[2,5,7],[6]] => 3
[[1,2,4,8],[3,5,7],[6]] => 3
[[1,2,3,8],[4,5,7],[6]] => 3
[[1,3,5,8],[2,4,6],[7]] => 3
[[1,2,5,8],[3,4,6],[7]] => 3
[[1,3,4,8],[2,5,6],[7]] => 3
[[1,2,4,8],[3,5,6],[7]] => 3
[[1,2,3,8],[4,5,6],[7]] => 3
[[1,4,6,7],[2,5,8],[3]] => 3
[[1,3,6,7],[2,5,8],[4]] => 3
[[1,2,6,7],[3,5,8],[4]] => 3
[[1,3,6,7],[2,4,8],[5]] => 3
[[1,2,6,7],[3,4,8],[5]] => 3
[[1,4,5,7],[2,6,8],[3]] => 3
[[1,3,5,7],[2,6,8],[4]] => 3
[[1,2,5,7],[3,6,8],[4]] => 3
[[1,3,4,7],[2,6,8],[5]] => 3
[[1,2,4,7],[3,6,8],[5]] => 3
[[1,2,3,7],[4,6,8],[5]] => 3
[[1,3,5,7],[2,4,8],[6]] => 3
[[1,2,5,7],[3,4,8],[6]] => 3
[[1,3,4,7],[2,5,8],[6]] => 3
[[1,2,4,7],[3,5,8],[6]] => 3
[[1,2,3,7],[4,5,8],[6]] => 3
[[1,4,5,6],[2,7,8],[3]] => 3
[[1,3,5,6],[2,7,8],[4]] => 3
[[1,2,5,6],[3,7,8],[4]] => 3
[[1,3,4,6],[2,7,8],[5]] => 3
[[1,2,4,6],[3,7,8],[5]] => 3
[[1,2,3,6],[4,7,8],[5]] => 3
[[1,3,4,5],[2,7,8],[6]] => 2
[[1,2,4,5],[3,7,8],[6]] => 2
[[1,2,3,5],[4,7,8],[6]] => 2
[[1,2,3,4],[5,7,8],[6]] => 2
[[1,3,5,6],[2,4,8],[7]] => 2
[[1,2,5,6],[3,4,8],[7]] => 2
[[1,3,4,6],[2,5,8],[7]] => 2
[[1,2,4,6],[3,5,8],[7]] => 2
[[1,2,3,6],[4,5,8],[7]] => 2
[[1,3,4,5],[2,6,8],[7]] => 2
[[1,2,4,5],[3,6,8],[7]] => 2
[[1,2,3,5],[4,6,8],[7]] => 2
[[1,2,3,4],[5,6,8],[7]] => 2
[[1,3,5,7],[2,4,6],[8]] => 2
[[1,2,5,7],[3,4,6],[8]] => 2
[[1,3,4,7],[2,5,6],[8]] => 2
[[1,2,4,7],[3,5,6],[8]] => 2
[[1,2,3,7],[4,5,6],[8]] => 2
[[1,3,5,6],[2,4,7],[8]] => 2
[[1,2,5,6],[3,4,7],[8]] => 2
[[1,3,4,6],[2,5,7],[8]] => 2
[[1,2,4,6],[3,5,7],[8]] => 2
[[1,2,3,6],[4,5,7],[8]] => 2
[[1,3,4,5],[2,6,7],[8]] => 2
[[1,2,4,5],[3,6,7],[8]] => 2
[[1,2,3,5],[4,6,7],[8]] => 2
[[1,2,3,4],[5,6,7],[8]] => 2
[[1,4,7,8],[2,5],[3,6]] => 3
[[1,3,7,8],[2,5],[4,6]] => 3
[[1,2,7,8],[3,5],[4,6]] => 3
[[1,3,7,8],[2,4],[5,6]] => 3
[[1,2,7,8],[3,4],[5,6]] => 3
[[1,4,6,8],[2,5],[3,7]] => 3
[[1,3,6,8],[2,5],[4,7]] => 3
[[1,2,6,8],[3,5],[4,7]] => 3
[[1,3,6,8],[2,4],[5,7]] => 3
[[1,2,6,8],[3,4],[5,7]] => 3
[[1,4,5,8],[2,6],[3,7]] => 3
[[1,3,5,8],[2,6],[4,7]] => 3
[[1,2,5,8],[3,6],[4,7]] => 3
[[1,3,4,8],[2,6],[5,7]] => 3
[[1,2,4,8],[3,6],[5,7]] => 3
[[1,2,3,8],[4,6],[5,7]] => 3
[[1,3,5,8],[2,4],[6,7]] => 3
[[1,2,5,8],[3,4],[6,7]] => 3
[[1,3,4,8],[2,5],[6,7]] => 3
[[1,2,4,8],[3,5],[6,7]] => 3
[[1,2,3,8],[4,5],[6,7]] => 3
[[1,4,6,7],[2,5],[3,8]] => 3
[[1,3,6,7],[2,5],[4,8]] => 3
[[1,2,6,7],[3,5],[4,8]] => 3
[[1,3,6,7],[2,4],[5,8]] => 3
[[1,2,6,7],[3,4],[5,8]] => 3
[[1,4,5,7],[2,6],[3,8]] => 3
[[1,3,5,7],[2,6],[4,8]] => 3
[[1,2,5,7],[3,6],[4,8]] => 3
[[1,3,4,7],[2,6],[5,8]] => 3
[[1,2,4,7],[3,6],[5,8]] => 3
[[1,2,3,7],[4,6],[5,8]] => 3
[[1,3,5,7],[2,4],[6,8]] => 3
[[1,2,5,7],[3,4],[6,8]] => 3
[[1,3,4,7],[2,5],[6,8]] => 3
[[1,2,4,7],[3,5],[6,8]] => 3
[[1,2,3,7],[4,5],[6,8]] => 3
[[1,4,5,6],[2,7],[3,8]] => 3
[[1,3,5,6],[2,7],[4,8]] => 3
[[1,2,5,6],[3,7],[4,8]] => 3
[[1,3,4,6],[2,7],[5,8]] => 3
[[1,2,4,6],[3,7],[5,8]] => 3
[[1,2,3,6],[4,7],[5,8]] => 3
[[1,3,4,5],[2,7],[6,8]] => 2
[[1,2,4,5],[3,7],[6,8]] => 2
[[1,2,3,5],[4,7],[6,8]] => 2
[[1,2,3,4],[5,7],[6,8]] => 2
[[1,3,5,6],[2,4],[7,8]] => 2
[[1,2,5,6],[3,4],[7,8]] => 2
[[1,3,4,6],[2,5],[7,8]] => 2
[[1,2,4,6],[3,5],[7,8]] => 2
[[1,2,3,6],[4,5],[7,8]] => 2
[[1,3,4,5],[2,6],[7,8]] => 2
[[1,2,4,5],[3,6],[7,8]] => 2
[[1,2,3,5],[4,6],[7,8]] => 2
[[1,2,3,4],[5,6],[7,8]] => 2
[[1,5,7,8],[2,6],[3],[4]] => 4
[[1,4,7,8],[2,6],[3],[5]] => 4
[[1,3,7,8],[2,6],[4],[5]] => 4
[[1,2,7,8],[3,6],[4],[5]] => 4
[[1,4,7,8],[2,5],[3],[6]] => 4
[[1,3,7,8],[2,5],[4],[6]] => 4
[[1,2,7,8],[3,5],[4],[6]] => 4
[[1,3,7,8],[2,4],[5],[6]] => 4
[[1,2,7,8],[3,4],[5],[6]] => 4
[[1,5,6,8],[2,7],[3],[4]] => 4
[[1,4,6,8],[2,7],[3],[5]] => 4
[[1,3,6,8],[2,7],[4],[5]] => 4
[[1,2,6,8],[3,7],[4],[5]] => 4
[[1,4,5,8],[2,7],[3],[6]] => 4
[[1,3,5,8],[2,7],[4],[6]] => 4
[[1,2,5,8],[3,7],[4],[6]] => 4
[[1,3,4,8],[2,7],[5],[6]] => 4
[[1,2,4,8],[3,7],[5],[6]] => 4
[[1,2,3,8],[4,7],[5],[6]] => 4
[[1,4,6,8],[2,5],[3],[7]] => 4
[[1,3,6,8],[2,5],[4],[7]] => 4
[[1,2,6,8],[3,5],[4],[7]] => 4
[[1,3,6,8],[2,4],[5],[7]] => 4
[[1,2,6,8],[3,4],[5],[7]] => 4
[[1,4,5,8],[2,6],[3],[7]] => 4
[[1,3,5,8],[2,6],[4],[7]] => 4
[[1,2,5,8],[3,6],[4],[7]] => 4
[[1,3,4,8],[2,6],[5],[7]] => 4
[[1,2,4,8],[3,6],[5],[7]] => 4
[[1,2,3,8],[4,6],[5],[7]] => 4
[[1,3,5,8],[2,4],[6],[7]] => 4
[[1,2,5,8],[3,4],[6],[7]] => 4
[[1,3,4,8],[2,5],[6],[7]] => 4
[[1,2,4,8],[3,5],[6],[7]] => 4
[[1,2,3,8],[4,5],[6],[7]] => 4
[[1,5,6,7],[2,8],[3],[4]] => 4
[[1,4,6,7],[2,8],[3],[5]] => 4
[[1,3,6,7],[2,8],[4],[5]] => 4
[[1,2,6,7],[3,8],[4],[5]] => 4
[[1,4,5,7],[2,8],[3],[6]] => 4
[[1,3,5,7],[2,8],[4],[6]] => 4
[[1,2,5,7],[3,8],[4],[6]] => 4
[[1,3,4,7],[2,8],[5],[6]] => 4
[[1,2,4,7],[3,8],[5],[6]] => 4
[[1,2,3,7],[4,8],[5],[6]] => 4
[[1,4,5,6],[2,8],[3],[7]] => 3
[[1,3,5,6],[2,8],[4],[7]] => 3
[[1,2,5,6],[3,8],[4],[7]] => 3
[[1,3,4,6],[2,8],[5],[7]] => 3
[[1,2,4,6],[3,8],[5],[7]] => 3
[[1,2,3,6],[4,8],[5],[7]] => 3
[[1,3,4,5],[2,8],[6],[7]] => 3
[[1,2,4,5],[3,8],[6],[7]] => 3
[[1,2,3,5],[4,8],[6],[7]] => 3
[[1,2,3,4],[5,8],[6],[7]] => 3
[[1,4,6,7],[2,5],[3],[8]] => 3
[[1,3,6,7],[2,5],[4],[8]] => 3
[[1,2,6,7],[3,5],[4],[8]] => 3
[[1,3,6,7],[2,4],[5],[8]] => 3
[[1,2,6,7],[3,4],[5],[8]] => 3
[[1,4,5,7],[2,6],[3],[8]] => 3
[[1,3,5,7],[2,6],[4],[8]] => 3
[[1,2,5,7],[3,6],[4],[8]] => 3
[[1,3,4,7],[2,6],[5],[8]] => 3
[[1,2,4,7],[3,6],[5],[8]] => 3
[[1,2,3,7],[4,6],[5],[8]] => 3
[[1,3,5,7],[2,4],[6],[8]] => 3
[[1,2,5,7],[3,4],[6],[8]] => 3
[[1,3,4,7],[2,5],[6],[8]] => 3
[[1,2,4,7],[3,5],[6],[8]] => 3
[[1,2,3,7],[4,5],[6],[8]] => 3
[[1,4,5,6],[2,7],[3],[8]] => 3
[[1,3,5,6],[2,7],[4],[8]] => 3
[[1,2,5,6],[3,7],[4],[8]] => 3
[[1,3,4,6],[2,7],[5],[8]] => 3
[[1,2,4,6],[3,7],[5],[8]] => 3
[[1,2,3,6],[4,7],[5],[8]] => 3
[[1,3,4,5],[2,7],[6],[8]] => 3
[[1,2,4,5],[3,7],[6],[8]] => 3
[[1,2,3,5],[4,7],[6],[8]] => 3
[[1,2,3,4],[5,7],[6],[8]] => 3
[[1,3,5,6],[2,4],[7],[8]] => 3
[[1,2,5,6],[3,4],[7],[8]] => 3
[[1,3,4,6],[2,5],[7],[8]] => 3
[[1,2,4,6],[3,5],[7],[8]] => 3
[[1,2,3,6],[4,5],[7],[8]] => 3
[[1,3,4,5],[2,6],[7],[8]] => 3
[[1,2,4,5],[3,6],[7],[8]] => 3
[[1,2,3,5],[4,6],[7],[8]] => 3
[[1,2,3,4],[5,6],[7],[8]] => 3
[[1,6,7,8],[2],[3],[4],[5]] => 5
[[1,5,7,8],[2],[3],[4],[6]] => 5
[[1,4,7,8],[2],[3],[5],[6]] => 5
[[1,3,7,8],[2],[4],[5],[6]] => 5
[[1,2,7,8],[3],[4],[5],[6]] => 5
[[1,5,6,8],[2],[3],[4],[7]] => 5
[[1,4,6,8],[2],[3],[5],[7]] => 5
[[1,3,6,8],[2],[4],[5],[7]] => 5
[[1,2,6,8],[3],[4],[5],[7]] => 5
[[1,4,5,8],[2],[3],[6],[7]] => 5
[[1,3,5,8],[2],[4],[6],[7]] => 5
[[1,2,5,8],[3],[4],[6],[7]] => 5
[[1,3,4,8],[2],[5],[6],[7]] => 5
[[1,2,4,8],[3],[5],[6],[7]] => 5
[[1,2,3,8],[4],[5],[6],[7]] => 5
[[1,5,6,7],[2],[3],[4],[8]] => 4
[[1,4,6,7],[2],[3],[5],[8]] => 4
[[1,3,6,7],[2],[4],[5],[8]] => 4
[[1,2,6,7],[3],[4],[5],[8]] => 4
[[1,4,5,7],[2],[3],[6],[8]] => 4
[[1,3,5,7],[2],[4],[6],[8]] => 4
[[1,2,5,7],[3],[4],[6],[8]] => 4
[[1,3,4,7],[2],[5],[6],[8]] => 4
[[1,2,4,7],[3],[5],[6],[8]] => 4
[[1,2,3,7],[4],[5],[6],[8]] => 4
[[1,4,5,6],[2],[3],[7],[8]] => 4
[[1,3,5,6],[2],[4],[7],[8]] => 4
[[1,2,5,6],[3],[4],[7],[8]] => 4
[[1,3,4,6],[2],[5],[7],[8]] => 4
[[1,2,4,6],[3],[5],[7],[8]] => 4
[[1,2,3,6],[4],[5],[7],[8]] => 4
[[1,3,4,5],[2],[6],[7],[8]] => 4
[[1,2,4,5],[3],[6],[7],[8]] => 4
[[1,2,3,5],[4],[6],[7],[8]] => 4
[[1,2,3,4],[5],[6],[7],[8]] => 4
[[1,4,7],[2,5,8],[3,6]] => 3
[[1,3,7],[2,5,8],[4,6]] => 3
[[1,2,7],[3,5,8],[4,6]] => 3
[[1,3,7],[2,4,8],[5,6]] => 3
[[1,2,7],[3,4,8],[5,6]] => 3
[[1,4,6],[2,5,8],[3,7]] => 3
[[1,3,6],[2,5,8],[4,7]] => 3
[[1,2,6],[3,5,8],[4,7]] => 3
[[1,3,6],[2,4,8],[5,7]] => 3
[[1,2,6],[3,4,8],[5,7]] => 3
[[1,4,5],[2,6,8],[3,7]] => 3
[[1,3,5],[2,6,8],[4,7]] => 3
[[1,2,5],[3,6,8],[4,7]] => 3
[[1,3,4],[2,6,8],[5,7]] => 2
[[1,2,4],[3,6,8],[5,7]] => 2
[[1,2,3],[4,6,8],[5,7]] => 1
[[1,3,5],[2,4,8],[6,7]] => 2
[[1,2,5],[3,4,8],[6,7]] => 2
[[1,3,4],[2,5,8],[6,7]] => 2
[[1,2,4],[3,5,8],[6,7]] => 2
[[1,2,3],[4,5,8],[6,7]] => 1
[[1,4,6],[2,5,7],[3,8]] => 3
[[1,3,6],[2,5,7],[4,8]] => 3
[[1,2,6],[3,5,7],[4,8]] => 3
[[1,3,6],[2,4,7],[5,8]] => 3
[[1,2,6],[3,4,7],[5,8]] => 3
[[1,4,5],[2,6,7],[3,8]] => 3
[[1,3,5],[2,6,7],[4,8]] => 3
[[1,2,5],[3,6,7],[4,8]] => 3
[[1,3,4],[2,6,7],[5,8]] => 2
[[1,2,4],[3,6,7],[5,8]] => 2
[[1,2,3],[4,6,7],[5,8]] => 1
[[1,3,5],[2,4,7],[6,8]] => 2
[[1,2,5],[3,4,7],[6,8]] => 2
[[1,3,4],[2,5,7],[6,8]] => 2
[[1,2,4],[3,5,7],[6,8]] => 2
[[1,2,3],[4,5,7],[6,8]] => 1
[[1,3,5],[2,4,6],[7,8]] => 2
[[1,2,5],[3,4,6],[7,8]] => 2
[[1,3,4],[2,5,6],[7,8]] => 2
[[1,2,4],[3,5,6],[7,8]] => 2
[[1,2,3],[4,5,6],[7,8]] => 1
[[1,5,7],[2,6,8],[3],[4]] => 4
[[1,4,7],[2,6,8],[3],[5]] => 4
[[1,3,7],[2,6,8],[4],[5]] => 4
[[1,2,7],[3,6,8],[4],[5]] => 4
[[1,4,7],[2,5,8],[3],[6]] => 4
[[1,3,7],[2,5,8],[4],[6]] => 4
[[1,2,7],[3,5,8],[4],[6]] => 4
[[1,3,7],[2,4,8],[5],[6]] => 4
[[1,2,7],[3,4,8],[5],[6]] => 4
[[1,5,6],[2,7,8],[3],[4]] => 4
[[1,4,6],[2,7,8],[3],[5]] => 4
[[1,3,6],[2,7,8],[4],[5]] => 4
[[1,2,6],[3,7,8],[4],[5]] => 4
[[1,4,5],[2,7,8],[3],[6]] => 3
[[1,3,5],[2,7,8],[4],[6]] => 3
[[1,2,5],[3,7,8],[4],[6]] => 3
[[1,3,4],[2,7,8],[5],[6]] => 2
[[1,2,4],[3,7,8],[5],[6]] => 2
[[1,2,3],[4,7,8],[5],[6]] => 2
[[1,4,6],[2,5,8],[3],[7]] => 3
[[1,3,6],[2,5,8],[4],[7]] => 3
[[1,2,6],[3,5,8],[4],[7]] => 3
[[1,3,6],[2,4,8],[5],[7]] => 3
[[1,2,6],[3,4,8],[5],[7]] => 3
[[1,4,5],[2,6,8],[3],[7]] => 3
[[1,3,5],[2,6,8],[4],[7]] => 3
[[1,2,5],[3,6,8],[4],[7]] => 3
[[1,3,4],[2,6,8],[5],[7]] => 2
[[1,2,4],[3,6,8],[5],[7]] => 2
[[1,2,3],[4,6,8],[5],[7]] => 2
[[1,3,5],[2,4,8],[6],[7]] => 2
[[1,2,5],[3,4,8],[6],[7]] => 2
[[1,3,4],[2,5,8],[6],[7]] => 2
[[1,2,4],[3,5,8],[6],[7]] => 2
[[1,2,3],[4,5,8],[6],[7]] => 2
[[1,4,6],[2,5,7],[3],[8]] => 3
[[1,3,6],[2,5,7],[4],[8]] => 3
[[1,2,6],[3,5,7],[4],[8]] => 3
[[1,3,6],[2,4,7],[5],[8]] => 3
[[1,2,6],[3,4,7],[5],[8]] => 3
[[1,4,5],[2,6,7],[3],[8]] => 3
[[1,3,5],[2,6,7],[4],[8]] => 3
[[1,2,5],[3,6,7],[4],[8]] => 3
[[1,3,4],[2,6,7],[5],[8]] => 2
[[1,2,4],[3,6,7],[5],[8]] => 2
[[1,2,3],[4,6,7],[5],[8]] => 2
[[1,3,5],[2,4,7],[6],[8]] => 2
[[1,2,5],[3,4,7],[6],[8]] => 2
[[1,3,4],[2,5,7],[6],[8]] => 2
[[1,2,4],[3,5,7],[6],[8]] => 2
[[1,2,3],[4,5,7],[6],[8]] => 2
[[1,3,5],[2,4,6],[7],[8]] => 2
[[1,2,5],[3,4,6],[7],[8]] => 2
[[1,3,4],[2,5,6],[7],[8]] => 2
[[1,2,4],[3,5,6],[7],[8]] => 2
[[1,2,3],[4,5,6],[7],[8]] => 2
[[1,5,8],[2,6],[3,7],[4]] => 4
[[1,4,8],[2,6],[3,7],[5]] => 4
[[1,3,8],[2,6],[4,7],[5]] => 4
[[1,2,8],[3,6],[4,7],[5]] => 4
[[1,4,8],[2,5],[3,7],[6]] => 4
[[1,3,8],[2,5],[4,7],[6]] => 4
[[1,2,8],[3,5],[4,7],[6]] => 4
[[1,3,8],[2,4],[5,7],[6]] => 4
[[1,2,8],[3,4],[5,7],[6]] => 4
[[1,4,8],[2,5],[3,6],[7]] => 4
[[1,3,8],[2,5],[4,6],[7]] => 4
[[1,2,8],[3,5],[4,6],[7]] => 4
[[1,3,8],[2,4],[5,6],[7]] => 4
[[1,2,8],[3,4],[5,6],[7]] => 4
[[1,5,7],[2,6],[3,8],[4]] => 4
[[1,4,7],[2,6],[3,8],[5]] => 4
[[1,3,7],[2,6],[4,8],[5]] => 4
[[1,2,7],[3,6],[4,8],[5]] => 4
[[1,4,7],[2,5],[3,8],[6]] => 4
[[1,3,7],[2,5],[4,8],[6]] => 4
[[1,2,7],[3,5],[4,8],[6]] => 4
[[1,3,7],[2,4],[5,8],[6]] => 4
[[1,2,7],[3,4],[5,8],[6]] => 4
[[1,5,6],[2,7],[3,8],[4]] => 4
[[1,4,6],[2,7],[3,8],[5]] => 4
[[1,3,6],[2,7],[4,8],[5]] => 4
[[1,2,6],[3,7],[4,8],[5]] => 4
[[1,4,5],[2,7],[3,8],[6]] => 3
[[1,3,5],[2,7],[4,8],[6]] => 3
[[1,2,5],[3,7],[4,8],[6]] => 3
[[1,3,4],[2,7],[5,8],[6]] => 3
[[1,2,4],[3,7],[5,8],[6]] => 3
[[1,2,3],[4,7],[5,8],[6]] => 3
[[1,4,6],[2,5],[3,8],[7]] => 3
[[1,3,6],[2,5],[4,8],[7]] => 3
[[1,2,6],[3,5],[4,8],[7]] => 3
[[1,3,6],[2,4],[5,8],[7]] => 3
[[1,2,6],[3,4],[5,8],[7]] => 3
[[1,4,5],[2,6],[3,8],[7]] => 3
[[1,3,5],[2,6],[4,8],[7]] => 3
[[1,2,5],[3,6],[4,8],[7]] => 3
[[1,3,4],[2,6],[5,8],[7]] => 3
[[1,2,4],[3,6],[5,8],[7]] => 3
[[1,2,3],[4,6],[5,8],[7]] => 3
[[1,3,5],[2,4],[6,8],[7]] => 3
[[1,2,5],[3,4],[6,8],[7]] => 3
[[1,3,4],[2,5],[6,8],[7]] => 3
[[1,2,4],[3,5],[6,8],[7]] => 3
[[1,2,3],[4,5],[6,8],[7]] => 3
[[1,4,7],[2,5],[3,6],[8]] => 3
[[1,3,7],[2,5],[4,6],[8]] => 3
[[1,2,7],[3,5],[4,6],[8]] => 3
[[1,3,7],[2,4],[5,6],[8]] => 3
[[1,2,7],[3,4],[5,6],[8]] => 3
[[1,4,6],[2,5],[3,7],[8]] => 3
[[1,3,6],[2,5],[4,7],[8]] => 3
[[1,2,6],[3,5],[4,7],[8]] => 3
[[1,3,6],[2,4],[5,7],[8]] => 3
[[1,2,6],[3,4],[5,7],[8]] => 3
[[1,4,5],[2,6],[3,7],[8]] => 3
[[1,3,5],[2,6],[4,7],[8]] => 3
[[1,2,5],[3,6],[4,7],[8]] => 3
[[1,3,4],[2,6],[5,7],[8]] => 3
[[1,2,4],[3,6],[5,7],[8]] => 3
[[1,2,3],[4,6],[5,7],[8]] => 3
[[1,3,5],[2,4],[6,7],[8]] => 3
[[1,2,5],[3,4],[6,7],[8]] => 3
[[1,3,4],[2,5],[6,7],[8]] => 3
[[1,2,4],[3,5],[6,7],[8]] => 3
[[1,2,3],[4,5],[6,7],[8]] => 3
[[1,6,8],[2,7],[3],[4],[5]] => 5
[[1,5,8],[2,7],[3],[4],[6]] => 5
[[1,4,8],[2,7],[3],[5],[6]] => 5
[[1,3,8],[2,7],[4],[5],[6]] => 5
[[1,2,8],[3,7],[4],[5],[6]] => 5
[[1,5,8],[2,6],[3],[4],[7]] => 5
[[1,4,8],[2,6],[3],[5],[7]] => 5
[[1,3,8],[2,6],[4],[5],[7]] => 5
[[1,2,8],[3,6],[4],[5],[7]] => 5
[[1,4,8],[2,5],[3],[6],[7]] => 5
[[1,3,8],[2,5],[4],[6],[7]] => 5
[[1,2,8],[3,5],[4],[6],[7]] => 5
[[1,3,8],[2,4],[5],[6],[7]] => 5
[[1,2,8],[3,4],[5],[6],[7]] => 5
[[1,6,7],[2,8],[3],[4],[5]] => 5
[[1,5,7],[2,8],[3],[4],[6]] => 5
[[1,4,7],[2,8],[3],[5],[6]] => 5
[[1,3,7],[2,8],[4],[5],[6]] => 5
[[1,2,7],[3,8],[4],[5],[6]] => 5
[[1,5,6],[2,8],[3],[4],[7]] => 4
[[1,4,6],[2,8],[3],[5],[7]] => 4
[[1,3,6],[2,8],[4],[5],[7]] => 4
[[1,2,6],[3,8],[4],[5],[7]] => 4
[[1,4,5],[2,8],[3],[6],[7]] => 4
[[1,3,5],[2,8],[4],[6],[7]] => 4
[[1,2,5],[3,8],[4],[6],[7]] => 4
[[1,3,4],[2,8],[5],[6],[7]] => 4
[[1,2,4],[3,8],[5],[6],[7]] => 4
[[1,2,3],[4,8],[5],[6],[7]] => 4
[[1,5,7],[2,6],[3],[4],[8]] => 4
[[1,4,7],[2,6],[3],[5],[8]] => 4
[[1,3,7],[2,6],[4],[5],[8]] => 4
[[1,2,7],[3,6],[4],[5],[8]] => 4
[[1,4,7],[2,5],[3],[6],[8]] => 4
[[1,3,7],[2,5],[4],[6],[8]] => 4
[[1,2,7],[3,5],[4],[6],[8]] => 4
[[1,3,7],[2,4],[5],[6],[8]] => 4
[[1,2,7],[3,4],[5],[6],[8]] => 4
[[1,5,6],[2,7],[3],[4],[8]] => 4
[[1,4,6],[2,7],[3],[5],[8]] => 4
[[1,3,6],[2,7],[4],[5],[8]] => 4
[[1,2,6],[3,7],[4],[5],[8]] => 4
[[1,4,5],[2,7],[3],[6],[8]] => 4
[[1,3,5],[2,7],[4],[6],[8]] => 4
[[1,2,5],[3,7],[4],[6],[8]] => 4
[[1,3,4],[2,7],[5],[6],[8]] => 4
[[1,2,4],[3,7],[5],[6],[8]] => 4
[[1,2,3],[4,7],[5],[6],[8]] => 4
[[1,4,6],[2,5],[3],[7],[8]] => 4
[[1,3,6],[2,5],[4],[7],[8]] => 4
[[1,2,6],[3,5],[4],[7],[8]] => 4
[[1,3,6],[2,4],[5],[7],[8]] => 4
[[1,2,6],[3,4],[5],[7],[8]] => 4
[[1,4,5],[2,6],[3],[7],[8]] => 4
[[1,3,5],[2,6],[4],[7],[8]] => 4
[[1,2,5],[3,6],[4],[7],[8]] => 4
[[1,3,4],[2,6],[5],[7],[8]] => 4
[[1,2,4],[3,6],[5],[7],[8]] => 4
[[1,2,3],[4,6],[5],[7],[8]] => 4
[[1,3,5],[2,4],[6],[7],[8]] => 4
[[1,2,5],[3,4],[6],[7],[8]] => 4
[[1,3,4],[2,5],[6],[7],[8]] => 4
[[1,2,4],[3,5],[6],[7],[8]] => 4
[[1,2,3],[4,5],[6],[7],[8]] => 4
[[1,7,8],[2],[3],[4],[5],[6]] => 6
[[1,6,8],[2],[3],[4],[5],[7]] => 6
[[1,5,8],[2],[3],[4],[6],[7]] => 6
[[1,4,8],[2],[3],[5],[6],[7]] => 6
[[1,3,8],[2],[4],[5],[6],[7]] => 6
[[1,2,8],[3],[4],[5],[6],[7]] => 6
[[1,6,7],[2],[3],[4],[5],[8]] => 5
[[1,5,7],[2],[3],[4],[6],[8]] => 5
[[1,4,7],[2],[3],[5],[6],[8]] => 5
[[1,3,7],[2],[4],[5],[6],[8]] => 5
[[1,2,7],[3],[4],[5],[6],[8]] => 5
[[1,5,6],[2],[3],[4],[7],[8]] => 5
[[1,4,6],[2],[3],[5],[7],[8]] => 5
[[1,3,6],[2],[4],[5],[7],[8]] => 5
[[1,2,6],[3],[4],[5],[7],[8]] => 5
[[1,4,5],[2],[3],[6],[7],[8]] => 5
[[1,3,5],[2],[4],[6],[7],[8]] => 5
[[1,2,5],[3],[4],[6],[7],[8]] => 5
[[1,3,4],[2],[5],[6],[7],[8]] => 5
[[1,2,4],[3],[5],[6],[7],[8]] => 5
[[1,2,3],[4],[5],[6],[7],[8]] => 5
[[1,5],[2,6],[3,7],[4,8]] => 4
[[1,4],[2,6],[3,7],[5,8]] => 3
[[1,3],[2,6],[4,7],[5,8]] => 2
[[1,2],[3,6],[4,7],[5,8]] => 1
[[1,4],[2,5],[3,7],[6,8]] => 3
[[1,3],[2,5],[4,7],[6,8]] => 2
[[1,2],[3,5],[4,7],[6,8]] => 1
[[1,3],[2,4],[5,7],[6,8]] => 2
[[1,2],[3,4],[5,7],[6,8]] => 1
[[1,4],[2,5],[3,6],[7,8]] => 3
[[1,3],[2,5],[4,6],[7,8]] => 2
[[1,2],[3,5],[4,6],[7,8]] => 1
[[1,3],[2,4],[5,6],[7,8]] => 2
[[1,2],[3,4],[5,6],[7,8]] => 1
[[1,6],[2,7],[3,8],[4],[5]] => 5
[[1,5],[2,7],[3,8],[4],[6]] => 4
[[1,4],[2,7],[3,8],[5],[6]] => 3
[[1,3],[2,7],[4,8],[5],[6]] => 2
[[1,2],[3,7],[4,8],[5],[6]] => 2
[[1,5],[2,6],[3,8],[4],[7]] => 4
[[1,4],[2,6],[3,8],[5],[7]] => 3
[[1,3],[2,6],[4,8],[5],[7]] => 2
[[1,2],[3,6],[4,8],[5],[7]] => 2
[[1,4],[2,5],[3,8],[6],[7]] => 3
[[1,3],[2,5],[4,8],[6],[7]] => 2
[[1,2],[3,5],[4,8],[6],[7]] => 2
[[1,3],[2,4],[5,8],[6],[7]] => 2
[[1,2],[3,4],[5,8],[6],[7]] => 2
[[1,5],[2,6],[3,7],[4],[8]] => 4
[[1,4],[2,6],[3,7],[5],[8]] => 3
[[1,3],[2,6],[4,7],[5],[8]] => 2
[[1,2],[3,6],[4,7],[5],[8]] => 2
[[1,4],[2,5],[3,7],[6],[8]] => 3
[[1,3],[2,5],[4,7],[6],[8]] => 2
[[1,2],[3,5],[4,7],[6],[8]] => 2
[[1,3],[2,4],[5,7],[6],[8]] => 2
[[1,2],[3,4],[5,7],[6],[8]] => 2
[[1,4],[2,5],[3,6],[7],[8]] => 3
[[1,3],[2,5],[4,6],[7],[8]] => 2
[[1,2],[3,5],[4,6],[7],[8]] => 2
[[1,3],[2,4],[5,6],[7],[8]] => 2
[[1,2],[3,4],[5,6],[7],[8]] => 2
[[1,7],[2,8],[3],[4],[5],[6]] => 6
[[1,6],[2,8],[3],[4],[5],[7]] => 5
[[1,5],[2,8],[3],[4],[6],[7]] => 4
[[1,4],[2,8],[3],[5],[6],[7]] => 4
[[1,3],[2,8],[4],[5],[6],[7]] => 4
[[1,2],[3,8],[4],[5],[6],[7]] => 4
[[1,6],[2,7],[3],[4],[5],[8]] => 5
[[1,5],[2,7],[3],[4],[6],[8]] => 4
[[1,4],[2,7],[3],[5],[6],[8]] => 4
[[1,3],[2,7],[4],[5],[6],[8]] => 4
[[1,2],[3,7],[4],[5],[6],[8]] => 4
[[1,5],[2,6],[3],[4],[7],[8]] => 4
[[1,4],[2,6],[3],[5],[7],[8]] => 4
[[1,3],[2,6],[4],[5],[7],[8]] => 4
[[1,2],[3,6],[4],[5],[7],[8]] => 4
[[1,4],[2,5],[3],[6],[7],[8]] => 4
[[1,3],[2,5],[4],[6],[7],[8]] => 4
[[1,2],[3,5],[4],[6],[7],[8]] => 4
[[1,3],[2,4],[5],[6],[7],[8]] => 4
[[1,2],[3,4],[5],[6],[7],[8]] => 4
[[1,8],[2],[3],[4],[5],[6],[7]] => 7
[[1,7],[2],[3],[4],[5],[6],[8]] => 6
[[1,6],[2],[3],[4],[5],[7],[8]] => 6
[[1,5],[2],[3],[4],[6],[7],[8]] => 6
[[1,4],[2],[3],[5],[6],[7],[8]] => 6
[[1,3],[2],[4],[5],[6],[7],[8]] => 6
[[1,2],[3],[4],[5],[6],[7],[8]] => 6
[[1],[2],[3],[4],[5],[6],[7],[8]] => 1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Generating function
click to show known generating functions
Search the OEIS for these generating functions
Search the Online Encyclopedia of Integer
Sequences for the coefficients of a few of the
first generating functions, in the case at hand:
3,1 4,5,1 6,12,7,1 7,36,23,9,1 13,72,99,36,11,1 16,193,298,191,52,13,1
$F_{1} = q$
$F_{2} = 2\ q$
$F_{3} = 3\ q + q^{2}$
$F_{4} = 4\ q + 5\ q^{2} + q^{3}$
$F_{5} = 6\ q + 12\ q^{2} + 7\ q^{3} + q^{4}$
$F_{6} = 7\ q + 36\ q^{2} + 23\ q^{3} + 9\ q^{4} + q^{5}$
$F_{7} = 13\ q + 72\ q^{2} + 99\ q^{3} + 36\ q^{4} + 11\ q^{5} + q^{6}$
$F_{8} = 16\ q + 193\ q^{2} + 298\ q^{3} + 191\ q^{4} + 52\ q^{5} + 13\ q^{6} + q^{7}$
Description
The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau.
A cylindrical tableau associated with a standard Young tableau $T$ is the skew row-strict tableau obtained by gluing two copies of $T$ such that the inner shape is a rectangle.
This statistic equals $\max_C\big(\ell(C) - \ell(T)\big)$, where $\ell$ denotes the number of rows of a tableau and the maximum is taken over all cylindrical tableaux.
A cylindrical tableau associated with a standard Young tableau $T$ is the skew row-strict tableau obtained by gluing two copies of $T$ such that the inner shape is a rectangle.
This statistic equals $\max_C\big(\ell(C) - \ell(T)\big)$, where $\ell$ denotes the number of rows of a tableau and the maximum is taken over all cylindrical tableaux.
Code
def statistic(T):
if not T:
return 0
w = len(T[0])
l = len(T)
d = 0
while d < l and len(T[d]) == w and T[0][w-1] < T[l-1-d][0]:
d += 1
return len(T)-d
Created
Jun 06, 2022 at 19:33 by Martin Rubey
Updated
Jun 06, 2022 at 19:33 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!