edit this statistic or download as text // json
Identifier
Values
=>
[1,2]=>0 [2,1]=>0 [1,2,3]=>0 [1,3,2]=>1 [2,1,3]=>0 [2,3,1]=>0 [3,1,2]=>0 [3,2,1]=>0 [1,2,3,4]=>0 [1,2,4,3]=>2 [1,3,2,4]=>1 [1,3,4,2]=>1 [1,4,2,3]=>1 [1,4,3,2]=>2 [2,1,3,4]=>0 [2,1,4,3]=>2 [2,3,1,4]=>0 [2,3,4,1]=>0 [2,4,1,3]=>1 [2,4,3,1]=>1 [3,1,2,4]=>0 [3,1,4,2]=>1 [3,2,1,4]=>0 [3,2,4,1]=>0 [3,4,1,2]=>0 [3,4,2,1]=>0 [4,1,2,3]=>0 [4,1,3,2]=>1 [4,2,1,3]=>0 [4,2,3,1]=>0 [4,3,1,2]=>0 [4,3,2,1]=>0 [1,2,3,4,5]=>0 [1,2,3,5,4]=>3 [1,2,4,3,5]=>2 [1,2,4,5,3]=>2 [1,2,5,3,4]=>2 [1,2,5,4,3]=>4 [1,3,2,4,5]=>1 [1,3,2,5,4]=>4 [1,3,4,2,5]=>1 [1,3,4,5,2]=>1 [1,3,5,2,4]=>3 [1,3,5,4,2]=>3 [1,4,2,3,5]=>1 [1,4,2,5,3]=>3 [1,4,3,2,5]=>2 [1,4,3,5,2]=>2 [1,4,5,2,3]=>2 [1,4,5,3,2]=>2 [1,5,2,3,4]=>1 [1,5,2,4,3]=>3 [1,5,3,2,4]=>2 [1,5,3,4,2]=>2 [1,5,4,2,3]=>2 [1,5,4,3,2]=>3 [2,1,3,4,5]=>0 [2,1,3,5,4]=>3 [2,1,4,3,5]=>2 [2,1,4,5,3]=>2 [2,1,5,3,4]=>2 [2,1,5,4,3]=>4 [2,3,1,4,5]=>0 [2,3,1,5,4]=>3 [2,3,4,1,5]=>0 [2,3,4,5,1]=>0 [2,3,5,1,4]=>2 [2,3,5,4,1]=>2 [2,4,1,3,5]=>1 [2,4,1,5,3]=>2 [2,4,3,1,5]=>1 [2,4,3,5,1]=>1 [2,4,5,1,3]=>1 [2,4,5,3,1]=>1 [2,5,1,3,4]=>1 [2,5,1,4,3]=>3 [2,5,3,1,4]=>1 [2,5,3,4,1]=>1 [2,5,4,1,3]=>2 [2,5,4,3,1]=>2 [3,1,2,4,5]=>0 [3,1,2,5,4]=>3 [3,1,4,2,5]=>1 [3,1,4,5,2]=>1 [3,1,5,2,4]=>2 [3,1,5,4,2]=>3 [3,2,1,4,5]=>0 [3,2,1,5,4]=>3 [3,2,4,1,5]=>0 [3,2,4,5,1]=>0 [3,2,5,1,4]=>2 [3,2,5,4,1]=>2 [3,4,1,2,5]=>0 [3,4,1,5,2]=>1 [3,4,2,1,5]=>0 [3,4,2,5,1]=>0 [3,4,5,1,2]=>0 [3,4,5,2,1]=>0 [3,5,1,2,4]=>1 [3,5,1,4,2]=>2 [3,5,2,1,4]=>1 [3,5,2,4,1]=>1 [3,5,4,1,2]=>1 [3,5,4,2,1]=>1 [4,1,2,3,5]=>0 [4,1,2,5,3]=>2 [4,1,3,2,5]=>1 [4,1,3,5,2]=>1 [4,1,5,2,3]=>1 [4,1,5,3,2]=>2 [4,2,1,3,5]=>0 [4,2,1,5,3]=>2 [4,2,3,1,5]=>0 [4,2,3,5,1]=>0 [4,2,5,1,3]=>1 [4,2,5,3,1]=>1 [4,3,1,2,5]=>0 [4,3,1,5,2]=>1 [4,3,2,1,5]=>0 [4,3,2,5,1]=>0 [4,3,5,1,2]=>0 [4,3,5,2,1]=>0 [4,5,1,2,3]=>0 [4,5,1,3,2]=>1 [4,5,2,1,3]=>0 [4,5,2,3,1]=>0 [4,5,3,1,2]=>0 [4,5,3,2,1]=>0 [5,1,2,3,4]=>0 [5,1,2,4,3]=>2 [5,1,3,2,4]=>1 [5,1,3,4,2]=>1 [5,1,4,2,3]=>1 [5,1,4,3,2]=>2 [5,2,1,3,4]=>0 [5,2,1,4,3]=>2 [5,2,3,1,4]=>0 [5,2,3,4,1]=>0 [5,2,4,1,3]=>1 [5,2,4,3,1]=>1 [5,3,1,2,4]=>0 [5,3,1,4,2]=>1 [5,3,2,1,4]=>0 [5,3,2,4,1]=>0 [5,3,4,1,2]=>0 [5,3,4,2,1]=>0 [5,4,1,2,3]=>0 [5,4,1,3,2]=>1 [5,4,2,1,3]=>0 [5,4,2,3,1]=>0 [5,4,3,1,2]=>0 [5,4,3,2,1]=>0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The Castelnuovo-Mumford regularity of a permutation.
The Castelnuovo-Mumford regularity of a permutation $\sigma$ is the Castelnuovo-Mumford regularity of the matrix Schubert variety $X_\sigma$.
Equivalently, it is the difference between the degrees of the Grothendieck polynomial and the Schubert polynomial for $\sigma$. It can be computed by subtracting the Coxeter length St000018The number of inversions of a permutation. from the Rajchgot index St001759The Rajchgot index of a permutation..
References
[1] Pechenik, O., E Speyer, D., Weigandt, A. Castelnuovo-Mumford regularity of matrix Schubert varieties arXiv:2111.10681
Code
def statistic(x):
    return max(v.major_index() for v in x.permutohedron_smaller()) - x.length()
Created
Jul 04, 2022 at 22:16 by Oliver Pechenik
Updated
Jul 05, 2022 at 10:54 by Martin Rubey