Identifier
Values
{{1,2}} => [2,1] => [1,2] => [1,2] => 0
{{1},{2}} => [1,2] => [1,2] => [1,2] => 0
{{1,2,3}} => [2,3,1] => [1,2,3] => [1,2,3] => 0
{{1,2},{3}} => [2,1,3] => [1,2,3] => [1,2,3] => 0
{{1,3},{2}} => [3,2,1] => [1,3,2] => [1,3,2] => 1
{{1},{2,3}} => [1,3,2] => [1,2,3] => [1,2,3] => 0
{{1},{2},{3}} => [1,2,3] => [1,2,3] => [1,2,3] => 0
{{1,2,3,4}} => [2,3,4,1] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3},{4}} => [2,3,1,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,4},{3}} => [2,4,3,1] => [1,2,4,3] => [1,2,4,3] => 2
{{1,2},{3,4}} => [2,1,4,3] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2},{3},{4}} => [2,1,3,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,3,4},{2}} => [3,2,4,1] => [1,3,4,2] => [1,4,3,2] => 2
{{1,3},{2,4}} => [3,4,1,2] => [1,3,2,4] => [1,3,2,4] => 1
{{1,3},{2},{4}} => [3,2,1,4] => [1,3,2,4] => [1,3,2,4] => 1
{{1,4},{2,3}} => [4,3,2,1] => [1,4,2,3] => [1,4,2,3] => 1
{{1},{2,3,4}} => [1,3,4,2] => [1,2,3,4] => [1,2,3,4] => 0
{{1},{2,3},{4}} => [1,3,2,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,4},{2},{3}} => [4,2,3,1] => [1,4,2,3] => [1,4,2,3] => 1
{{1},{2,4},{3}} => [1,4,3,2] => [1,2,4,3] => [1,2,4,3] => 2
{{1},{2},{3,4}} => [1,2,4,3] => [1,2,3,4] => [1,2,3,4] => 0
{{1},{2},{3},{4}} => [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3,4,5}} => [2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,3,4},{5}} => [2,3,4,1,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,3,5},{4}} => [2,3,5,4,1] => [1,2,3,5,4] => [1,2,3,5,4] => 3
{{1,2,3},{4,5}} => [2,3,1,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,3},{4},{5}} => [2,3,1,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,4,5},{3}} => [2,4,3,5,1] => [1,2,4,5,3] => [1,2,5,4,3] => 4
{{1,2,4},{3,5}} => [2,4,5,1,3] => [1,2,4,3,5] => [1,2,4,3,5] => 2
{{1,2,4},{3},{5}} => [2,4,3,1,5] => [1,2,4,3,5] => [1,2,4,3,5] => 2
{{1,2,5},{3,4}} => [2,5,4,3,1] => [1,2,5,3,4] => [1,2,5,3,4] => 2
{{1,2},{3,4,5}} => [2,1,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2},{3,4},{5}} => [2,1,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,5},{3},{4}} => [2,5,3,4,1] => [1,2,5,3,4] => [1,2,5,3,4] => 2
{{1,2},{3,5},{4}} => [2,1,5,4,3] => [1,2,3,5,4] => [1,2,3,5,4] => 3
{{1,2},{3},{4,5}} => [2,1,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2},{3},{4},{5}} => [2,1,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,3,4,5},{2}} => [3,2,4,5,1] => [1,3,4,5,2] => [1,5,4,3,2] => 3
{{1,3,4},{2,5}} => [3,5,4,1,2] => [1,3,4,2,5] => [1,4,3,2,5] => 2
{{1,3,4},{2},{5}} => [3,2,4,1,5] => [1,3,4,2,5] => [1,4,3,2,5] => 2
{{1,3,5},{2,4}} => [3,4,5,2,1] => [1,3,5,2,4] => [1,5,3,2,4] => 2
{{1,3},{2,4,5}} => [3,4,1,5,2] => [1,3,2,4,5] => [1,3,2,4,5] => 1
{{1,3},{2,4},{5}} => [3,4,1,2,5] => [1,3,2,4,5] => [1,3,2,4,5] => 1
{{1,3,5},{2},{4}} => [3,2,5,4,1] => [1,3,5,2,4] => [1,5,3,2,4] => 2
{{1,3},{2,5},{4}} => [3,5,1,4,2] => [1,3,2,5,4] => [1,3,2,5,4] => 4
{{1,3},{2},{4,5}} => [3,2,1,5,4] => [1,3,2,4,5] => [1,3,2,4,5] => 1
{{1,3},{2},{4},{5}} => [3,2,1,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 1
{{1,4,5},{2,3}} => [4,3,2,5,1] => [1,4,5,2,3] => [1,5,2,4,3] => 3
{{1,4},{2,3,5}} => [4,3,5,1,2] => [1,4,2,3,5] => [1,4,2,3,5] => 1
{{1,4},{2,3},{5}} => [4,3,2,1,5] => [1,4,2,3,5] => [1,4,2,3,5] => 1
{{1,5},{2,3,4}} => [5,3,4,2,1] => [1,5,2,3,4] => [1,5,2,3,4] => 1
{{1},{2,3,4,5}} => [1,3,4,5,2] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1},{2,3,4},{5}} => [1,3,4,2,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,5},{2,3},{4}} => [5,3,2,4,1] => [1,5,2,3,4] => [1,5,2,3,4] => 1
{{1},{2,3,5},{4}} => [1,3,5,4,2] => [1,2,3,5,4] => [1,2,3,5,4] => 3
{{1},{2,3},{4,5}} => [1,3,2,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1},{2,3},{4},{5}} => [1,3,2,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,4,5},{2},{3}} => [4,2,3,5,1] => [1,4,5,2,3] => [1,5,2,4,3] => 3
{{1,4},{2,5},{3}} => [4,5,3,1,2] => [1,4,2,5,3] => [1,5,4,2,3] => 2
{{1,4},{2},{3,5}} => [4,2,5,1,3] => [1,4,2,3,5] => [1,4,2,3,5] => 1
{{1,4},{2},{3},{5}} => [4,2,3,1,5] => [1,4,2,3,5] => [1,4,2,3,5] => 1
{{1,5},{2,4},{3}} => [5,4,3,2,1] => [1,5,2,4,3] => [1,4,5,2,3] => 2
{{1},{2,4,5},{3}} => [1,4,3,5,2] => [1,2,4,5,3] => [1,2,5,4,3] => 4
{{1},{2,4},{3,5}} => [1,4,5,2,3] => [1,2,4,3,5] => [1,2,4,3,5] => 2
{{1},{2,4},{3},{5}} => [1,4,3,2,5] => [1,2,4,3,5] => [1,2,4,3,5] => 2
{{1,5},{2},{3,4}} => [5,2,4,3,1] => [1,5,2,3,4] => [1,5,2,3,4] => 1
{{1},{2,5},{3,4}} => [1,5,4,3,2] => [1,2,5,3,4] => [1,2,5,3,4] => 2
{{1},{2},{3,4,5}} => [1,2,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1},{2},{3,4},{5}} => [1,2,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,5},{2},{3},{4}} => [5,2,3,4,1] => [1,5,2,3,4] => [1,5,2,3,4] => 1
{{1},{2,5},{3},{4}} => [1,5,3,4,2] => [1,2,5,3,4] => [1,2,5,3,4] => 2
{{1},{2},{3,5},{4}} => [1,2,5,4,3] => [1,2,3,5,4] => [1,2,3,5,4] => 3
{{1},{2},{3},{4,5}} => [1,2,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1},{2},{3},{4},{5}} => [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The Castelnuovo-Mumford regularity of a permutation.
The Castelnuovo-Mumford regularity of a permutation $\sigma$ is the Castelnuovo-Mumford regularity of the matrix Schubert variety $X_\sigma$.
Equivalently, it is the difference between the degrees of the Grothendieck polynomial and the Schubert polynomial for $\sigma$. It can be computed by subtracting the Coxeter length St000018The number of inversions of a permutation. from the Rajchgot index St001759The Rajchgot index of a permutation..
Map
Clarke-Steingrimsson-Zeng inverse
Description
The inverse of the Clarke-Steingrimsson-Zeng map, sending excedances to descents.
This is the inverse of the map $\Phi$ in [1, sec.3].
Map
to permutation
Description
Sends the set partition to the permutation obtained by considering the blocks as increasing cycles.
Map
cycle-as-one-line notation
Description
Return the permutation obtained by concatenating the cycles of a permutation, each written with minimal element first, sorted by minimal element.