Identifier
Values
([],1) => ([],1) => ([],1) => ([(0,1)],2) => 1
([(0,1)],2) => ([(0,1)],2) => ([],2) => ([(0,2),(1,2)],3) => 1
([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => ([],3) => ([(0,3),(1,3),(2,3)],4) => 1
([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(2,3)],4) => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => ([],4) => ([(0,4),(1,4),(2,4),(3,4)],5) => 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => ([(2,3),(2,4),(3,4)],5) => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(2,4),(3,4)],5) => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(3,4)],5) => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(3,4)],5) => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The biclique partition number of a graph.
The biclique partition number of a graph is the minimum number of pairwise edge disjoint complete bipartite subgraphs so that each edge belongs to exactly one of them. A theorem of Graham and Pollak [1] asserts that the complete graph $K_n$ has biclique partition number $n - 1$.
The biclique partition number of a graph is the minimum number of pairwise edge disjoint complete bipartite subgraphs so that each edge belongs to exactly one of them. A theorem of Graham and Pollak [1] asserts that the complete graph $K_n$ has biclique partition number $n - 1$.
Map
incomparability graph
Description
The incomparability graph of a poset.
Map
cone
Description
The cone of a graph.
The cone of a graph is obtained by joining a new vertex to all the vertices of the graph. The added vertex is called a universal vertex or a dominating vertex.
The cone of a graph is obtained by joining a new vertex to all the vertices of the graph. The added vertex is called a universal vertex or a dominating vertex.
Map
to poset
Description
Return the poset corresponding to the lattice.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!