Identifier
-
Mp00119:
Dyck paths
—to 321-avoiding permutation (Krattenthaler)⟶
Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001821: Signed permutations ⟶ ℤ
Values
[1,0] => [1] => [1] => 0
[1,0,1,0] => [1,2] => [1,2] => 0
[1,1,0,0] => [2,1] => [2,1] => 1
[1,0,1,0,1,0] => [1,2,3] => [1,2,3] => 0
[1,0,1,1,0,0] => [1,3,2] => [1,3,2] => 1
[1,1,0,0,1,0] => [2,1,3] => [2,1,3] => 1
[1,1,0,1,0,0] => [2,3,1] => [2,3,1] => 2
[1,1,1,0,0,0] => [3,1,2] => [3,1,2] => 3
[1,0,1,0,1,0,1,0] => [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,1,0,0] => [1,2,4,3] => [1,2,4,3] => 1
[1,0,1,1,0,0,1,0] => [1,3,2,4] => [1,3,2,4] => 1
[1,0,1,1,0,1,0,0] => [1,3,4,2] => [1,3,4,2] => 2
[1,0,1,1,1,0,0,0] => [1,4,2,3] => [1,4,2,3] => 3
[1,1,0,0,1,0,1,0] => [2,1,3,4] => [2,1,3,4] => 1
[1,1,0,0,1,1,0,0] => [2,1,4,3] => [2,1,4,3] => 2
[1,1,0,1,0,0,1,0] => [2,3,1,4] => [2,3,1,4] => 2
[1,1,0,1,0,1,0,0] => [2,3,4,1] => [2,3,4,1] => 3
[1,1,0,1,1,0,0,0] => [2,4,1,3] => [2,4,1,3] => 4
[1,1,1,0,0,0,1,0] => [3,1,2,4] => [3,1,2,4] => 3
[1,1,1,0,0,1,0,0] => [3,1,4,2] => [3,1,4,2] => 4
[1,1,1,0,1,0,0,0] => [3,4,1,2] => [3,4,1,2] => 4
[1,1,1,1,0,0,0,0] => [4,1,2,3] => [4,1,2,3] => 6
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The sorting index of a signed permutation.
A signed permutation $\sigma = [\sigma(1),\ldots,\sigma(n)]$ can be sorted $[1,\ldots,n]$ by signed transpositions in the following way:
First move $\pm n$ to its position and swap the sign if needed, then $\pm (n-1), \pm (n-2)$ and so on.
For example for $[2,-4,5,-1,-3]$ we have the swaps
$$ [2,-4,5,-1,-3] \rightarrow [2,-4,-3,-1,5] \rightarrow [2,1,-3,4,5] \rightarrow [2,1,3,4,5] \rightarrow [1,2,3,4,5] $$
given by the signed transpositions $(3,5), (-2,4), (-3,3), (1,2)$.
If $(i_1,j_1),\ldots,(i_n,j_n)$ is the decomposition of $\sigma$ obtained this way (including trivial transpositions) then the sorting index of $\sigma$ is defined as
$$ \operatorname{sor}_B(\sigma) = \sum_{k=1}^{n-1} j_k - i_k - \chi(i_k < 0), $$
where $\chi(i_k < 0)$ is 1 if $i_k$ is negative and 0 otherwise.
For $\sigma = [2,-4,5,-1,-3]$ we have
$$ \operatorname{sor}_B(\sigma) = (5-3) + (4-(-2)-1) + (3-(-3)-1) + (2-1) = 13. $$
A signed permutation $\sigma = [\sigma(1),\ldots,\sigma(n)]$ can be sorted $[1,\ldots,n]$ by signed transpositions in the following way:
First move $\pm n$ to its position and swap the sign if needed, then $\pm (n-1), \pm (n-2)$ and so on.
For example for $[2,-4,5,-1,-3]$ we have the swaps
$$ [2,-4,5,-1,-3] \rightarrow [2,-4,-3,-1,5] \rightarrow [2,1,-3,4,5] \rightarrow [2,1,3,4,5] \rightarrow [1,2,3,4,5] $$
given by the signed transpositions $(3,5), (-2,4), (-3,3), (1,2)$.
If $(i_1,j_1),\ldots,(i_n,j_n)$ is the decomposition of $\sigma$ obtained this way (including trivial transpositions) then the sorting index of $\sigma$ is defined as
$$ \operatorname{sor}_B(\sigma) = \sum_{k=1}^{n-1} j_k - i_k - \chi(i_k < 0), $$
where $\chi(i_k < 0)$ is 1 if $i_k$ is negative and 0 otherwise.
For $\sigma = [2,-4,5,-1,-3]$ we have
$$ \operatorname{sor}_B(\sigma) = (5-3) + (4-(-2)-1) + (3-(-3)-1) + (2-1) = 13. $$
Map
to 321-avoiding permutation (Krattenthaler)
Description
Krattenthaler's bijection to 321-avoiding permutations.
Draw the path of semilength $n$ in an $n\times n$ square matrix, starting at the upper left corner, with right and down steps, and staying below the diagonal. Then the permutation matrix is obtained by placing ones into the cells corresponding to the peaks of the path and placing ones into the remaining columns from left to right, such that the row indices of the cells increase.
Draw the path of semilength $n$ in an $n\times n$ square matrix, starting at the upper left corner, with right and down steps, and staying below the diagonal. Then the permutation matrix is obtained by placing ones into the cells corresponding to the peaks of the path and placing ones into the remaining columns from left to right, such that the row indices of the cells increase.
Map
to signed permutation
Description
The signed permutation with all signs positive.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!