Identifier
-
Mp00099:
Dyck paths
—bounce path⟶
Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001821: Signed permutations ⟶ ℤ
Values
[1,0] => [1,0] => [2,1] => [2,1] => 1
[1,0,1,0] => [1,0,1,0] => [3,1,2] => [3,1,2] => 3
[1,1,0,0] => [1,1,0,0] => [2,3,1] => [2,3,1] => 2
[1,0,1,0,1,0] => [1,0,1,0,1,0] => [4,1,2,3] => [4,1,2,3] => 6
[1,0,1,1,0,0] => [1,0,1,1,0,0] => [3,1,4,2] => [3,1,4,2] => 4
[1,1,0,0,1,0] => [1,1,0,0,1,0] => [2,4,1,3] => [2,4,1,3] => 4
[1,1,0,1,0,0] => [1,0,1,1,0,0] => [3,1,4,2] => [3,1,4,2] => 4
[1,1,1,0,0,0] => [1,1,1,0,0,0] => [2,3,4,1] => [2,3,4,1] => 3
[] => [] => [1] => [1] => 0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The sorting index of a signed permutation.
A signed permutation $\sigma = [\sigma(1),\ldots,\sigma(n)]$ can be sorted $[1,\ldots,n]$ by signed transpositions in the following way:
First move $\pm n$ to its position and swap the sign if needed, then $\pm (n-1), \pm (n-2)$ and so on.
For example for $[2,-4,5,-1,-3]$ we have the swaps
$$ [2,-4,5,-1,-3] \rightarrow [2,-4,-3,-1,5] \rightarrow [2,1,-3,4,5] \rightarrow [2,1,3,4,5] \rightarrow [1,2,3,4,5] $$
given by the signed transpositions $(3,5), (-2,4), (-3,3), (1,2)$.
If $(i_1,j_1),\ldots,(i_n,j_n)$ is the decomposition of $\sigma$ obtained this way (including trivial transpositions) then the sorting index of $\sigma$ is defined as
$$ \operatorname{sor}_B(\sigma) = \sum_{k=1}^{n-1} j_k - i_k - \chi(i_k < 0), $$
where $\chi(i_k < 0)$ is 1 if $i_k$ is negative and 0 otherwise.
For $\sigma = [2,-4,5,-1,-3]$ we have
$$ \operatorname{sor}_B(\sigma) = (5-3) + (4-(-2)-1) + (3-(-3)-1) + (2-1) = 13. $$
A signed permutation $\sigma = [\sigma(1),\ldots,\sigma(n)]$ can be sorted $[1,\ldots,n]$ by signed transpositions in the following way:
First move $\pm n$ to its position and swap the sign if needed, then $\pm (n-1), \pm (n-2)$ and so on.
For example for $[2,-4,5,-1,-3]$ we have the swaps
$$ [2,-4,5,-1,-3] \rightarrow [2,-4,-3,-1,5] \rightarrow [2,1,-3,4,5] \rightarrow [2,1,3,4,5] \rightarrow [1,2,3,4,5] $$
given by the signed transpositions $(3,5), (-2,4), (-3,3), (1,2)$.
If $(i_1,j_1),\ldots,(i_n,j_n)$ is the decomposition of $\sigma$ obtained this way (including trivial transpositions) then the sorting index of $\sigma$ is defined as
$$ \operatorname{sor}_B(\sigma) = \sum_{k=1}^{n-1} j_k - i_k - \chi(i_k < 0), $$
where $\chi(i_k < 0)$ is 1 if $i_k$ is negative and 0 otherwise.
For $\sigma = [2,-4,5,-1,-3]$ we have
$$ \operatorname{sor}_B(\sigma) = (5-3) + (4-(-2)-1) + (3-(-3)-1) + (2-1) = 13. $$
Map
Ringel
Description
The Ringel permutation of the LNakayama algebra corresponding to a Dyck path.
Map
to signed permutation
Description
The signed permutation with all signs positive.
Map
bounce path
Description
Sends a Dyck path $D$ of length $2n$ to its bounce path.
This path is formed by starting at the endpoint $(n,n)$ of $D$ and travelling west until encountering the first vertical step of $D$, then south until hitting the diagonal, then west again to hit $D$, etc. until the point $(0,0)$ is reached.
This map is the first part of the zeta map Mp00030zeta map.
This path is formed by starting at the endpoint $(n,n)$ of $D$ and travelling west until encountering the first vertical step of $D$, then south until hitting the diagonal, then west again to hit $D$, etc. until the point $(0,0)$ is reached.
This map is the first part of the zeta map Mp00030zeta map.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!