Values
=>
Cc0020;cc-rep
([],1)=>0
([],2)=>1
([(0,1)],2)=>1
([],3)=>0
([(1,2)],3)=>1
([(0,2),(1,2)],3)=>2
([(0,1),(0,2),(1,2)],3)=>3
([],4)=>0
([(2,3)],4)=>0
([(1,3),(2,3)],4)=>1
([(0,3),(1,3),(2,3)],4)=>3
([(0,3),(1,2)],4)=>1
([(0,3),(1,2),(2,3)],4)=>3
([(1,2),(1,3),(2,3)],4)=>3
([(0,3),(1,2),(1,3),(2,3)],4)=>6
([(0,2),(0,3),(1,2),(1,3)],4)=>6
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>10
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>15
([],5)=>0
([(3,4)],5)=>0
([(2,4),(3,4)],5)=>0
([(1,4),(2,4),(3,4)],5)=>1
([(0,4),(1,4),(2,4),(3,4)],5)=>4
([(1,4),(2,3)],5)=>0
([(1,4),(2,3),(3,4)],5)=>1
([(0,1),(2,4),(3,4)],5)=>1
([(2,3),(2,4),(3,4)],5)=>0
([(0,4),(1,4),(2,3),(3,4)],5)=>4
([(1,4),(2,3),(2,4),(3,4)],5)=>3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>9
([(1,3),(1,4),(2,3),(2,4)],5)=>4
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>10
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>8
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>9
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>18
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>20
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>32
([(0,4),(1,3),(2,3),(2,4)],5)=>4
([(0,1),(2,3),(2,4),(3,4)],5)=>3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>9
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>18
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>10
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>19
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>32
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>18
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>16
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>31
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>51
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)=>33
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>52
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>77
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>110
([],6)=>0
([(4,5)],6)=>0
([(3,5),(4,5)],6)=>0
([(2,5),(3,5),(4,5)],6)=>0
([(1,5),(2,5),(3,5),(4,5)],6)=>1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>5
([(2,5),(3,4)],6)=>0
([(2,5),(3,4),(4,5)],6)=>0
([(1,2),(3,5),(4,5)],6)=>0
([(3,4),(3,5),(4,5)],6)=>0
([(1,5),(2,5),(3,4),(4,5)],6)=>1
([(0,1),(2,5),(3,5),(4,5)],6)=>1
([(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>5
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>12
([(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,5),(1,5),(2,4),(3,4)],6)=>1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>4
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>5
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>3
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>5
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>14
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>8
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>12
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>26
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>12
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>14
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>32
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>20
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>26
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>52
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>64
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>96
([(0,5),(1,4),(2,3)],6)=>0
([(1,5),(2,4),(3,4),(3,5)],6)=>1
([(0,1),(2,5),(3,4),(4,5)],6)=>1
([(1,2),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>5
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>3
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>12
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>9
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>27
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>5
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>14
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>11
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)=>15
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>8
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>12
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>30
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>26
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>21
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>53
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>5
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)=>4
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)=>3
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)=>14
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)=>12
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)=>12
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>8
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>12
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)=>30
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)=>26
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>27
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>54
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>26
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>16
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>47
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>34
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)=>62
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>52
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>53
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>58
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>98
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>57
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>40
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>47
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>91
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>108
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>160
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>32
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>24
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>57
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>45
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>97
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)=>15
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)=>33
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>30
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>31
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>26
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>30
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>58
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>53
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>59
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>99
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)=>65
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>57
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>109
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>103
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>168
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>97
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>75
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>91
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>152
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>104
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>99
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>161
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>254
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)=>117
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>180
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>174
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>270
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>387
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)=>9
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)=>26
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)=>27
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>16
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>54
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>47
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>93
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)=>59
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>105
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>91
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>99
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>98
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>162
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>176
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>256
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)=>63
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>59
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>105
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>170
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>111
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>176
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>169
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>264
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>389
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>168
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>161
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>255
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>152
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>125
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>235
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>378
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>561
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>272
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>262
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>271
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>398
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>408
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>572
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>792
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1080
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of two-component spanning forests of a graph.
A spanning subgraph is a subgraph which contains all vertices of the ambient graph. A forest is a graph which contains no cycles, and has any number of connected components. A two-component spanning forest is a spanning subgraph which contains no cycles and has two connected components.
A spanning subgraph is a subgraph which contains all vertices of the ambient graph. A forest is a graph which contains no cycles, and has any number of connected components. A two-component spanning forest is a spanning subgraph which contains no cycles and has two connected components.
References
[1] Kassel, A., Kenyon, R., Wu, W. Random two-component spanning forests MathSciNet:3414453 zbMATH:1334.82011 DOI:10.1214/14-AIHP625 arXiv:1203.4858
[2] Number of forests with two connected components in the complete graph K_n. OEIS:A083483
[3] Number a(n) of forests with two components in the complete bipartite graph K_n,n. OEIS:A100070
[2] Number of forests with two connected components in the complete graph K_n. OEIS:A083483
[3] Number a(n) of forests with two components in the complete bipartite graph K_n,n. OEIS:A100070
Code
def statistic(g): n = len(g.vertices()) L = g.kirchhoff_matrix() # reduced Laplacian matrix Lred = L[:n-1,:n-1] a = 0 for i in range(n-1): skip_i = [j for j in range(n-1) if j != i] # add number of forests rooted at i and n-1 a += Lred[skip_i,skip_i].det() for (i,j,_) in g.edges(): if i != n-1 and j != n-1 and i != j: skip_ij = [k for k in range(n-1) if k != i and k != j] # subtract number of forests rooted at e+, e-, and n-1 a -= Lred[skip_ij, skip_ij].det() return a
Created
Jul 26, 2022 at 11:37 by Harry Richman
Updated
Jul 26, 2022 at 11:37 by Harry Richman
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!