Identifier
Values
([],1) => ([],1) => ([],2) => 2
([],2) => ([],1) => ([],2) => 2
([(0,1)],2) => ([(0,1)],2) => ([(1,2)],3) => 2
([],3) => ([],1) => ([],2) => 2
([(1,2)],3) => ([(1,2)],3) => ([(2,3)],4) => 3
([(0,2),(1,2)],3) => ([(0,1)],2) => ([(1,2)],3) => 2
([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => ([(1,2),(1,3),(2,3)],4) => 1
([],4) => ([],1) => ([],2) => 2
([(2,3)],4) => ([(1,2)],3) => ([(2,3)],4) => 3
([(1,3),(2,3)],4) => ([(1,2)],3) => ([(2,3)],4) => 3
([(0,3),(1,3),(2,3)],4) => ([(0,1)],2) => ([(1,2)],3) => 2
([(0,3),(1,2)],4) => ([(0,3),(1,2)],4) => ([(1,4),(2,3)],5) => 3
([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => ([(1,4),(2,3),(3,4)],5) => 2
([(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => ([(2,3),(2,4),(3,4)],5) => 2
([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,1)],2) => ([(1,2)],3) => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([(1,2),(1,3),(2,3)],4) => 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => -1
([],5) => ([],1) => ([],2) => 2
([(3,4)],5) => ([(1,2)],3) => ([(2,3)],4) => 3
([(2,4),(3,4)],5) => ([(1,2)],3) => ([(2,3)],4) => 3
([(1,4),(2,4),(3,4)],5) => ([(1,2)],3) => ([(2,3)],4) => 3
([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => ([(1,2)],3) => 2
([(1,4),(2,3)],5) => ([(1,4),(2,3)],5) => ([(2,5),(3,4)],6) => 4
([(1,4),(2,3),(3,4)],5) => ([(1,4),(2,3),(3,4)],5) => ([(2,5),(3,4),(4,5)],6) => 3
([(0,1),(2,4),(3,4)],5) => ([(0,3),(1,2)],4) => ([(1,4),(2,3)],5) => 3
([(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(2,3)],4) => ([(2,3),(2,4),(3,4)],5) => 2
([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => ([(1,4),(2,3),(3,4)],5) => 2
([(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(2,5),(3,4),(3,5),(4,5)],6) => 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 1
([(1,3),(1,4),(2,3),(2,4)],5) => ([(1,2)],3) => ([(2,3)],4) => 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => ([(1,4),(2,3),(3,4)],5) => 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(2,3)],4) => ([(2,3),(2,4),(3,4)],5) => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1)],2) => ([(1,2)],3) => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(1,2),(1,3),(2,3)],4) => 1
([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(1,5),(2,4),(3,4),(3,5)],6) => 2
([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,1),(2,3),(2,4),(3,4)],5) => ([(1,2),(3,4),(3,5),(4,5)],6) => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => -1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(1,2),(1,3),(2,3)],4) => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => -1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -4
([],6) => ([],1) => ([],2) => 2
([(4,5)],6) => ([(1,2)],3) => ([(2,3)],4) => 3
([(3,5),(4,5)],6) => ([(1,2)],3) => ([(2,3)],4) => 3
([(2,5),(3,5),(4,5)],6) => ([(1,2)],3) => ([(2,3)],4) => 3
([(1,5),(2,5),(3,5),(4,5)],6) => ([(1,2)],3) => ([(2,3)],4) => 3
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => ([(1,2)],3) => 2
([(2,5),(3,4)],6) => ([(1,4),(2,3)],5) => ([(2,5),(3,4)],6) => 4
([(2,5),(3,4),(4,5)],6) => ([(1,4),(2,3),(3,4)],5) => ([(2,5),(3,4),(4,5)],6) => 3
([(1,2),(3,5),(4,5)],6) => ([(1,4),(2,3)],5) => ([(2,5),(3,4)],6) => 4
([(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => ([(2,3),(2,4),(3,4)],5) => 2
([(1,5),(2,5),(3,4),(4,5)],6) => ([(1,4),(2,3),(3,4)],5) => ([(2,5),(3,4),(4,5)],6) => 3
([(0,1),(2,5),(3,5),(4,5)],6) => ([(0,3),(1,2)],4) => ([(1,4),(2,3)],5) => 3
([(2,5),(3,4),(3,5),(4,5)],6) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(2,5),(3,4),(3,5),(4,5)],6) => 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => ([(1,4),(2,3),(3,4)],5) => 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(2,5),(3,4),(3,5),(4,5)],6) => 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 1
([(2,4),(2,5),(3,4),(3,5)],6) => ([(1,2)],3) => ([(2,3)],4) => 3
([(0,5),(1,5),(2,4),(3,4)],6) => ([(0,3),(1,2)],4) => ([(1,4),(2,3)],5) => 3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(1,4),(2,3),(3,4)],5) => ([(2,5),(3,4),(4,5)],6) => 3
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(1,5),(2,4),(3,4),(3,5)],6) => 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => ([(2,3),(2,4),(3,4)],5) => 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => ([(1,4),(2,3),(3,4)],5) => 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => ([(1,4),(2,3),(3,4)],5) => 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(2,5),(3,4),(3,5),(4,5)],6) => 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,2)],3) => ([(2,3)],4) => 3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(1,5),(2,4),(3,4),(3,5)],6) => 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(1,2),(2,3)],4) => ([(1,4),(2,3),(3,4)],5) => 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => ([(2,3),(2,4),(3,4)],5) => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([(1,2)],3) => 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(1,2),(1,3),(2,3)],4) => 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(1,2)],4) => ([(1,4),(2,3)],5) => 3
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => ([(0,1),(2,3),(2,4),(3,4)],5) => ([(1,2),(3,4),(3,5),(4,5)],6) => 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(1,5),(2,4),(3,4),(3,5)],6) => 2
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(2,3),(2,4),(3,4)],5) => ([(1,2),(3,4),(3,5),(4,5)],6) => 2
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 1
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 0
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 1
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
>>> Load all 318 entries. <<<
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => -1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -2
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => ([(1,4),(2,3),(3,4)],5) => 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(2,5),(3,4),(3,5),(4,5)],6) => 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 1
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => ([(2,3),(2,4),(3,4)],5) => 2
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(1,2),(2,3)],4) => ([(1,4),(2,3),(3,4)],5) => 2
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => -1
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -1
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -2
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => ([(0,1)],2) => ([(1,2)],3) => 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(1,2),(1,3),(2,3)],4) => 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => -1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 0
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => -1
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -1
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -2
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(1,2),(1,3),(2,3)],4) => 1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => -1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -4
([],7) => ([],1) => ([],2) => 2
([(5,6)],7) => ([(1,2)],3) => ([(2,3)],4) => 3
([(4,6),(5,6)],7) => ([(1,2)],3) => ([(2,3)],4) => 3
([(3,6),(4,6),(5,6)],7) => ([(1,2)],3) => ([(2,3)],4) => 3
([(2,6),(3,6),(4,6),(5,6)],7) => ([(1,2)],3) => ([(2,3)],4) => 3
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(1,2)],3) => ([(2,3)],4) => 3
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1)],2) => ([(1,2)],3) => 2
([(3,6),(4,5)],7) => ([(1,4),(2,3)],5) => ([(2,5),(3,4)],6) => 4
([(3,6),(4,5),(5,6)],7) => ([(1,4),(2,3),(3,4)],5) => ([(2,5),(3,4),(4,5)],6) => 3
([(2,3),(4,6),(5,6)],7) => ([(1,4),(2,3)],5) => ([(2,5),(3,4)],6) => 4
([(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => ([(2,3),(2,4),(3,4)],5) => 2
([(2,6),(3,6),(4,5),(5,6)],7) => ([(1,4),(2,3),(3,4)],5) => ([(2,5),(3,4),(4,5)],6) => 3
([(1,2),(3,6),(4,6),(5,6)],7) => ([(1,4),(2,3)],5) => ([(2,5),(3,4)],6) => 4
([(3,6),(4,5),(4,6),(5,6)],7) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(2,5),(3,4),(3,5),(4,5)],6) => 2
([(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(1,4),(2,3),(3,4)],5) => ([(2,5),(3,4),(4,5)],6) => 3
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,3),(1,2)],4) => ([(1,4),(2,3)],5) => 3
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(2,5),(3,4),(3,5),(4,5)],6) => 2
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => ([(1,4),(2,3),(3,4)],5) => 2
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(2,5),(3,4),(3,5),(4,5)],6) => 2
([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 1
([(3,5),(3,6),(4,5),(4,6)],7) => ([(1,2)],3) => ([(2,3)],4) => 3
([(1,6),(2,6),(3,5),(4,5)],7) => ([(1,4),(2,3)],5) => ([(2,5),(3,4)],6) => 4
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(1,4),(2,3),(3,4)],5) => ([(2,5),(3,4),(4,5)],6) => 3
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => ([(0,3),(1,2)],4) => ([(1,4),(2,3)],5) => 3
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => ([(2,3),(2,4),(3,4)],5) => 2
([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(1,4),(2,3),(3,4)],5) => ([(2,5),(3,4),(4,5)],6) => 3
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(1,4),(2,3),(3,4)],5) => ([(2,5),(3,4),(4,5)],6) => 3
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(1,5),(2,4),(3,4),(3,5)],6) => 2
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(2,5),(3,4),(3,5),(4,5)],6) => 2
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => ([(1,4),(2,3),(3,4)],5) => 2
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2),(2,3)],4) => ([(1,4),(2,3),(3,4)],5) => 2
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(2,5),(3,4),(3,5),(4,5)],6) => 2
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 1
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,2)],3) => ([(2,3)],4) => 3
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(1,5),(2,4),(3,4),(3,5)],6) => 2
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,4),(2,3),(3,4)],5) => ([(2,5),(3,4),(4,5)],6) => 3
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(1,5),(2,4),(3,4),(3,5)],6) => 2
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => ([(2,3),(2,4),(3,4)],5) => 2
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 1
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2),(2,3)],4) => ([(1,4),(2,3),(3,4)],5) => 2
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(2,5),(3,4),(3,5),(4,5)],6) => 2
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 1
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 1
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,2)],3) => ([(2,3)],4) => 3
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(1,5),(2,4),(3,4),(3,5)],6) => 2
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2),(2,3)],4) => ([(1,4),(2,3),(3,4)],5) => 2
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => ([(2,3),(2,4),(3,4)],5) => 2
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 1
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,1)],2) => ([(1,2)],3) => 2
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,2)],3) => ([(1,2),(1,3),(2,3)],4) => 1
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,4),(2,3)],5) => ([(2,5),(3,4)],6) => 4
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7) => ([(0,1),(2,3),(2,4),(3,4)],5) => ([(1,2),(3,4),(3,5),(4,5)],6) => 2
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 1
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -1
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2)],4) => ([(1,4),(2,3)],5) => 3
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(1,5),(2,4),(3,4),(3,5)],6) => 2
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(2,3),(2,4),(3,4)],5) => ([(1,2),(3,4),(3,5),(4,5)],6) => 2
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 1
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 1
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 0
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2),(2,3)],4) => ([(1,4),(2,3),(3,4)],5) => 2
([(0,1),(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 1
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6)],7) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,1),(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => -1
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(2,5),(3,4),(3,5),(4,5)],6) => 2
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -2
([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(1,4),(2,3),(3,4)],5) => ([(2,5),(3,4),(4,5)],6) => 3
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(2,5),(3,4),(3,5),(4,5)],6) => 2
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => ([(1,4),(2,3),(3,4)],5) => 2
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => ([(2,3),(2,4),(3,4)],5) => 2
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 1
([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(2,5),(3,4),(3,5),(4,5)],6) => 2
([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => ([(0,3),(1,2)],4) => ([(1,4),(2,3)],5) => 3
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => ([(0,1),(2,3),(2,4),(3,4)],5) => ([(1,2),(3,4),(3,5),(4,5)],6) => 2
([(0,6),(1,6),(2,3),(2,4),(3,5),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(1,5),(2,4),(3,4),(3,5)],6) => 2
([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(1,5),(2,4),(3,4),(3,5)],6) => 2
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 1
([(0,1),(0,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 1
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 0
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,4),(2,3),(3,4)],5) => ([(2,5),(3,4),(4,5)],6) => 3
([(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 1
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -1
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 1
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => -1
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2),(2,3)],4) => ([(1,4),(2,3),(3,4)],5) => 2
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => -1
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -2
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => ([(1,2)],3) => ([(2,3)],4) => 3
([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => ([(1,4),(2,3),(3,4)],5) => 2
([(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(2,5),(3,4),(3,5),(4,5)],6) => 2
([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(2,5),(3,4),(3,5),(4,5)],6) => 2
([(0,6),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 1
([(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 1
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => ([(2,3),(2,4),(3,4)],5) => 2
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 1
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2),(2,3)],4) => ([(1,4),(2,3),(3,4)],5) => 2
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 1
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => -1
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -1
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => ([(0,1)],2) => ([(1,2)],3) => 2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,2)],3) => ([(1,2),(1,3),(2,3)],4) => 1
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => -1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(1,5),(2,4),(3,4),(3,5)],6) => 2
([(0,1),(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 1
([(0,1),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,1),(2,3),(2,4),(3,4)],5) => ([(1,2),(3,4),(3,5),(4,5)],6) => 2
([(0,1),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 1
([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 0
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(1,5),(2,4),(3,4),(3,5)],6) => 2
([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 1
([(0,1),(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 0
([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7) => ([(0,1),(2,3),(2,4),(3,4)],5) => ([(1,2),(3,4),(3,5),(4,5)],6) => 2
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -1
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 1
([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => -1
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(4,5)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 1
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => -1
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -2
([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,2),(1,3),(2,3)],4) => ([(2,3),(2,4),(3,4)],5) => 2
([(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -1
([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -2
([(0,1),(0,2),(0,6),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 1
([(0,4),(0,5),(1,2),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => -1
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => -1
([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -1
([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,2)],3) => ([(1,2),(1,3),(2,3)],4) => 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 0
([(0,2),(0,3),(0,4),(0,6),(1,2),(1,3),(1,4),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => -1
([(0,1),(0,2),(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -1
([(0,1),(0,2),(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -2
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,1),(0,2),(1,2)],3) => ([(1,2),(1,3),(2,3)],4) => 1
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => -1
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -4
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -2
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => -1
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -4
([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -4
([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,7),(6,7)],8) => ([(0,1),(0,2),(1,2)],3) => ([(1,2),(1,3),(2,3)],4) => 1
([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -2
([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => -1
([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => -1
([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => -1
([(0,1),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => ([(0,1),(2,3),(2,4),(3,4)],5) => ([(1,2),(3,4),(3,5),(4,5)],6) => 2
([(0,1),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8) => ([(0,3),(1,2)],4) => ([(1,4),(2,3)],5) => 3
([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,1),(0,2),(1,2)],3) => ([(1,2),(1,3),(2,3)],4) => 1
([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,6),(6,7)],8) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => -1
([(0,1),(0,2),(0,3),(0,4),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => -1
([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7)],8) => ([(0,1)],2) => ([(1,2)],3) => 2
([(0,2),(0,3),(1,2),(1,3),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => ([(0,1),(2,3),(2,4),(3,4)],5) => ([(1,2),(3,4),(3,5),(4,5)],6) => 2
([(0,6),(0,7),(1,3),(1,4),(2,3),(2,4),(5,6),(5,7)],8) => ([(0,3),(1,2)],4) => ([(1,4),(2,3)],5) => 3
([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,6)],8) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The Euler characteristic of a graph.
The Euler characteristic $\chi$ of a topological space is the alternating sum of the dimensions of the homology groups
$$\chi(X) = \sum_{k \geq 0} (-1)^k \dim H_k(X).$$
For a finite simplicial complex, this is equal to the alternating sum $ \sum_{k\geq 0} (-1)^k f_k$ where $f_k$ the number of $k$-dimensional simplices. A (simple) graph is a simplicial complex of dimension at most one; its vertices are the 0-simplices and its edges are the 1-simplices.
For a connected graph, the Euler characteristic is equal to $1 - g$ where $g$ is the cyclomatic number.
Map
de-duplicate
Description
The de-duplicate of a graph.
Let $G = (V, E)$ be a graph. This map yields the graph whose vertex set is the set of (distinct) neighbourhoods $\{N_v | v \in V\}$ of $G$, and has an edge $(N_a, N_b)$ between two vertices if and only if $(a, b)$ is an edge of $G$. This is well-defined, because if $N_a = N_c$ and $N_b = N_d$, then $(a, b)\in E$ if and only if $(c, d)\in E$.
The image of this map is the set of so-called 'mating graphs' or 'point-determining graphs'.
This map preserves the chromatic number.
Map
vertex addition
Description
Adds a disconnected vertex to a graph.