Values
=>
Cc0020;cc-rep
([],1)=>2
([],2)=>3
([(0,1)],2)=>4
([],3)=>4
([(1,2)],3)=>6
([(0,2),(1,2)],3)=>7
([(0,1),(0,2),(1,2)],3)=>8
([],4)=>5
([(2,3)],4)=>8
([(1,3),(2,3)],4)=>10
([(0,3),(1,3),(2,3)],4)=>11
([(0,3),(1,2)],4)=>9
([(0,3),(1,2),(2,3)],4)=>12
([(1,2),(1,3),(2,3)],4)=>12
([(0,3),(1,2),(1,3),(2,3)],4)=>16
([(0,2),(0,3),(1,2),(1,3)],4)=>14
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>18
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>19
([],5)=>6
([(3,4)],5)=>10
([(2,4),(3,4)],5)=>13
([(1,4),(2,4),(3,4)],5)=>15
([(0,4),(1,4),(2,4),(3,4)],5)=>16
([(1,4),(2,3)],5)=>12
([(1,4),(2,3),(3,4)],5)=>17
([(0,1),(2,4),(3,4)],5)=>16
([(2,3),(2,4),(3,4)],5)=>16
([(0,4),(1,4),(2,3),(3,4)],5)=>21
([(1,4),(2,3),(2,4),(3,4)],5)=>24
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>28
([(1,3),(1,4),(2,3),(2,4)],5)=>21
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>28
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>28
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>28
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>36
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>30
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>38
([(0,4),(1,3),(2,3),(2,4)],5)=>19
([(0,1),(2,3),(2,4),(3,4)],5)=>20
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>29
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>32
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>22
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>36
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>43
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>36
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>30
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>42
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>50
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)=>41
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>47
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>52
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>53
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of non-isomorphic minors of a graph.
A minor of a graph $G$ is a graph obtained from $G$ by repeatedly deleting or contracting edges, or removing isolated vertices.
This statistic records the total number of (non-empty) non-isomorphic minors of a graph.
A minor of a graph $G$ is a graph obtained from $G$ by repeatedly deleting or contracting edges, or removing isolated vertices.
This statistic records the total number of (non-empty) non-isomorphic minors of a graph.
References
Code
# extremely naive and slow code def statistic(G): l = 0 for n in range(G.num_verts()+1): for H in graphs(n): try: m = G.minor(H) l += 1 except ValueError: pass return l
Created
Sep 14, 2022 at 22:34 by Martin Rubey
Updated
Sep 14, 2022 at 22:34 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!