Values
([],1) => 2
([],2) => 3
([(0,1)],2) => 4
([],3) => 4
([(1,2)],3) => 6
([(0,2),(1,2)],3) => 7
([(0,1),(0,2),(1,2)],3) => 8
([],4) => 5
([(2,3)],4) => 8
([(1,3),(2,3)],4) => 10
([(0,3),(1,3),(2,3)],4) => 11
([(0,3),(1,2)],4) => 9
([(0,3),(1,2),(2,3)],4) => 12
([(1,2),(1,3),(2,3)],4) => 12
([(0,3),(1,2),(1,3),(2,3)],4) => 16
([(0,2),(0,3),(1,2),(1,3)],4) => 14
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 18
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 19
([],5) => 6
([(3,4)],5) => 10
([(2,4),(3,4)],5) => 13
([(1,4),(2,4),(3,4)],5) => 15
([(0,4),(1,4),(2,4),(3,4)],5) => 16
([(1,4),(2,3)],5) => 12
([(1,4),(2,3),(3,4)],5) => 17
([(0,1),(2,4),(3,4)],5) => 16
([(2,3),(2,4),(3,4)],5) => 16
([(0,4),(1,4),(2,3),(3,4)],5) => 21
([(1,4),(2,3),(2,4),(3,4)],5) => 24
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 28
([(1,3),(1,4),(2,3),(2,4)],5) => 21
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 28
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 28
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 28
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 36
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 30
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 38
([(0,4),(1,3),(2,3),(2,4)],5) => 19
([(0,1),(2,3),(2,4),(3,4)],5) => 20
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 29
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 32
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 22
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 36
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 43
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 36
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 30
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 42
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 50
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => 41
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 47
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 52
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 53
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of non-isomorphic minors of a graph.
A minor of a graph $G$ is a graph obtained from $G$ by repeatedly deleting or contracting edges, or removing isolated vertices.
This statistic records the total number of (non-empty) non-isomorphic minors of a graph.
A minor of a graph $G$ is a graph obtained from $G$ by repeatedly deleting or contracting edges, or removing isolated vertices.
This statistic records the total number of (non-empty) non-isomorphic minors of a graph.
References
Code
# extremely naive and slow code
def statistic(G):
l = 0
for n in range(G.num_verts()+1):
for H in graphs(n):
try:
m = G.minor(H)
l += 1
except ValueError:
pass
return l
Created
Sep 14, 2022 at 22:34 by Martin Rubey
Updated
Sep 14, 2022 at 22:34 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!