Identifier
-
Mp00199:
Dyck paths
—prime Dyck path⟶
Dyck paths
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
St001843: Set partitions ⟶ ℤ
Values
[1,0] => [1,1,0,0] => {{1,2}} => 0
[1,0,1,0] => [1,1,0,1,0,0] => {{1,3},{2}} => 1
[1,1,0,0] => [1,1,1,0,0,0] => {{1,2,3}} => 0
[1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => {{1,4},{2},{3}} => 2
[1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => {{1,3,4},{2}} => 1
[1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => {{1,4},{2,3}} => 1
[1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => {{1,2,4},{3}} => 2
[1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => {{1,2,3,4}} => 0
[1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => {{1,5},{2},{3},{4}} => 3
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => {{1,4,5},{2},{3}} => 2
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => {{1,5},{2},{3,4}} => 2
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => {{1,3,5},{2},{4}} => 3
[1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => {{1,3,4,5},{2}} => 1
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => {{1,5},{2,3},{4}} => 2
[1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => {{1,4,5},{2,3}} => 1
[1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => {{1,5},{2,4},{3}} => 3
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => {{1,2,5},{3},{4}} => 4
[1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => {{1,2,4,5},{3}} => 2
[1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => {{1,5},{2,3,4}} => 1
[1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => {{1,2,5},{3,4}} => 2
[1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => {{1,2,3,5},{4}} => 3
[1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => {{1,2,3,4,5}} => 0
[1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => {{1,6},{2},{3},{4},{5}} => 4
[1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => {{1,5,6},{2},{3},{4}} => 3
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => {{1,6},{2},{3},{4,5}} => 3
[1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => {{1,4,6},{2},{3},{5}} => 4
[1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => {{1,4,5,6},{2},{3}} => 2
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => {{1,6},{2},{3,4},{5}} => 3
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => {{1,5,6},{2},{3,4}} => 2
[1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => {{1,6},{2},{3,5},{4}} => 4
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => {{1,3,6},{2},{4},{5}} => 5
[1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => {{1,3,5,6},{2},{4}} => 3
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => {{1,6},{2},{3,4,5}} => 2
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => {{1,3,6},{2},{4,5}} => 3
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => {{1,3,4,6},{2},{5}} => 4
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => {{1,3,4,5,6},{2}} => 1
[1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => {{1,6},{2,3},{4},{5}} => 3
[1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => {{1,5,6},{2,3},{4}} => 2
[1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => {{1,6},{2,3},{4,5}} => 2
[1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => {{1,4,6},{2,3},{5}} => 3
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => {{1,4,5,6},{2,3}} => 1
[1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => {{1,6},{2,4},{3},{5}} => 4
[1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => {{1,5,6},{2,4},{3}} => 3
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => {{1,6},{2,5},{3},{4}} => 5
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => {{1,2,6},{3},{4},{5}} => 6
[1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => {{1,2,5,6},{3},{4}} => 4
[1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => {{1,6},{2,4,5},{3}} => 3
[1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => {{1,2,6},{3},{4,5}} => 4
[1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => {{1,2,4,6},{3},{5}} => 5
[1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => {{1,2,4,5,6},{3}} => 2
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => {{1,6},{2,3,4},{5}} => 2
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => {{1,5,6},{2,3,4}} => 1
[1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => {{1,6},{2,5},{3,4}} => 3
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => {{1,2,6},{3,4},{5}} => 4
[1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => {{1,2,5,6},{3,4}} => 2
[1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => {{1,6},{2,3,5},{4}} => 4
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => {{1,2,6},{3,5},{4}} => 5
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => {{1,2,3,6},{4},{5}} => 6
[1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => {{1,2,3,5,6},{4}} => 3
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => {{1,6},{2,3,4,5}} => 1
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => {{1,2,6},{3,4,5}} => 2
[1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => {{1,2,3,6},{4,5}} => 3
[1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => {{1,2,3,4,6},{5}} => 4
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => {{1,2,3,4,5,6}} => 0
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => {{1,7},{2},{3},{4},{5},{6}} => 5
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,1,0,0,0] => {{1,6,7},{2},{3},{4},{5}} => 4
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,1,0,0] => {{1,7},{2},{3},{4},{5,6}} => 4
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,0,1,1,0,1,0,0,0] => {{1,5,7},{2},{3},{4},{6}} => 5
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,1,1,1,0,0,0,0] => {{1,5,6,7},{2},{3},{4}} => 3
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,1,0,0] => {{1,7},{2},{3},{4,5},{6}} => 4
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,1,1,0,0,0] => {{1,6,7},{2},{3},{4,5}} => 3
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,0,1,1,0,1,0,0,1,0,0] => {{1,7},{2},{3},{4,6},{5}} => 5
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,1,0,0,0] => {{1,4,7},{2},{3},{5},{6}} => 6
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,1,1,0,0,0,0] => {{1,4,6,7},{2},{3},{5}} => 4
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,1,0,0] => {{1,7},{2},{3},{4,5,6}} => 3
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,0,1,1,1,0,0,1,0,0,0] => {{1,4,7},{2},{3},{5,6}} => 4
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,1,1,0,1,0,0,0,0] => {{1,4,5,7},{2},{3},{6}} => 5
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,1,1,1,0,0,0,0,0] => {{1,4,5,6,7},{2},{3}} => 2
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,1,0,0] => {{1,7},{2},{3,4},{5},{6}} => 4
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,1,0,1,1,0,0,0] => {{1,6,7},{2},{3,4},{5}} => 3
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,1,0,0] => {{1,7},{2},{3,4},{5,6}} => 3
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,1,1,0,1,0,0,0] => {{1,5,7},{2},{3,4},{6}} => 4
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,1,0,0,1,1,1,0,0,0,0] => {{1,5,6,7},{2},{3,4}} => 2
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,1,0,0] => {{1,7},{2},{3,5},{4},{6}} => 5
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,1,0,0,1,1,0,0,0] => {{1,6,7},{2},{3,5},{4}} => 4
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,1,0,0,1,0,0] => {{1,7},{2},{3,6},{4},{5}} => 6
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,1,0,0,0] => {{1,3,7},{2},{4},{5},{6}} => 7
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,1,1,0,0,0,0] => {{1,3,6,7},{2},{4},{5}} => 5
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,1,1,0,0,0,1,0,0] => {{1,7},{2},{3,5,6},{4}} => 4
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,1,1,0,0,1,0,0,0] => {{1,3,7},{2},{4},{5,6}} => 5
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,0,1,1,0,1,1,0,1,0,0,0,0] => {{1,3,5,7},{2},{4},{6}} => 6
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,1,0,1,1,1,0,0,0,0,0] => {{1,3,5,6,7},{2},{4}} => 3
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,1,0,0] => {{1,7},{2},{3,4,5},{6}} => 3
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,1,0,0,0,1,1,0,0,0] => {{1,6,7},{2},{3,4,5}} => 2
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,1,0,0,1,0,0,1,0,0] => {{1,7},{2},{3,6},{4,5}} => 4
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,1,0,0,0] => {{1,3,7},{2},{4,5},{6}} => 5
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,1,0,0,1,1,0,0,0,0] => {{1,3,6,7},{2},{4,5}} => 3
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,1,1,0,1,0,0,0,1,0,0] => {{1,7},{2},{3,4,6},{5}} => 5
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,1,0,1,0,0,1,0,0,0] => {{1,3,7},{2},{4,6},{5}} => 6
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,1,0,0,0,0] => {{1,3,4,7},{2},{5},{6}} => 7
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,1,0,1,1,0,0,0,0,0] => {{1,3,4,6,7},{2},{5}} => 4
>>> Load all 197 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The Z-index of a set partition.
The Mahonian representation of a set partition $\{B_1,\dots,B_k\}$ of $\{1,\dots,n\}$ is the restricted growth word $w_1\dots w_n$ obtained by sorting the blocks of the set partition according to their maximal element, and setting $w_i$ to the index of the block containing $i$.
The Z-index of $w$ equals
$$ \sum_{i < j} w_{i,j}, $$
where $w_{i,j}$ is the word obtained from $w$ by removing all letters different from $i$ and $j$.
The Mahonian representation of a set partition $\{B_1,\dots,B_k\}$ of $\{1,\dots,n\}$ is the restricted growth word $w_1\dots w_n$ obtained by sorting the blocks of the set partition according to their maximal element, and setting $w_i$ to the index of the block containing $i$.
The Z-index of $w$ equals
$$ \sum_{i < j} w_{i,j}, $$
where $w_{i,j}$ is the word obtained from $w$ by removing all letters different from $i$ and $j$.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
to noncrossing partition
Description
Biane's map to noncrossing set partitions.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!