Identifier
-
Mp00069:
Permutations
—complement⟶
Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001845: Lattices ⟶ ℤ
Values
[1] => [1] => ([],1) => ([(0,1)],2) => 0
[1,2] => [2,1] => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 0
[2,1] => [1,2] => ([(0,1)],2) => ([(0,2),(2,1)],3) => 0
[1,2,3] => [3,2,1] => ([],3) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[1,3,2] => [3,1,2] => ([(1,2)],3) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 0
[2,1,3] => [2,3,1] => ([(1,2)],3) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 0
[2,3,1] => [2,1,3] => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 0
[3,1,2] => [1,3,2] => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 0
[3,2,1] => [1,2,3] => ([(0,2),(2,1)],3) => ([(0,3),(2,1),(3,2)],4) => 0
[1,4,3,2] => [4,1,2,3] => ([(1,2),(2,3)],4) => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 0
[2,1,4,3] => [3,4,1,2] => ([(0,3),(1,2)],4) => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 0
[2,3,4,1] => [3,2,1,4] => ([(0,3),(1,3),(2,3)],4) => ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9) => 0
[2,4,1,3] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8) => 0
[2,4,3,1] => [3,1,2,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 0
[3,1,4,2] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8) => 0
[3,2,1,4] => [2,3,4,1] => ([(1,2),(2,3)],4) => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 0
[3,2,4,1] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 0
[3,4,1,2] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 0
[3,4,2,1] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 0
[4,1,2,3] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4) => ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9) => 0
[4,1,3,2] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 0
[4,2,1,3] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 0
[4,2,3,1] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 0
[4,3,1,2] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 0
[4,3,2,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[2,5,4,3,1] => [4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9) => 0
[3,5,2,4,1] => [3,1,4,2,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9) => 0
[3,5,4,1,2] => [3,1,2,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9) => 0
[3,5,4,2,1] => [3,1,2,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8) => 0
[4,2,5,3,1] => [2,4,1,3,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9) => 0
[4,3,2,5,1] => [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9) => 0
[4,3,5,1,2] => [2,3,1,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9) => 0
[4,3,5,2,1] => [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8) => 0
[4,5,1,3,2] => [2,1,5,3,4] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5) => ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9) => 0
[4,5,2,1,3] => [2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5) => ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9) => 0
[4,5,2,3,1] => [2,1,4,3,5] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5) => ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8) => 0
[4,5,3,1,2] => [2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5) => ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8) => 0
[4,5,3,2,1] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 0
[5,1,4,3,2] => [1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5) => ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9) => 0
[5,2,4,1,3] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9) => 0
[5,2,4,3,1] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8) => 0
[5,3,1,4,2] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9) => 0
[5,3,2,1,4] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5) => ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9) => 0
[5,3,2,4,1] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8) => 0
[5,3,4,1,2] => [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8) => 0
[5,3,4,2,1] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 0
[5,4,1,3,2] => [1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5) => ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8) => 0
[5,4,2,1,3] => [1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5) => ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8) => 0
[5,4,2,3,1] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 0
[5,4,3,1,2] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 0
[5,4,3,2,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[4,6,5,3,2,1] => [3,1,2,4,5,6] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9) => 0
[5,4,6,3,2,1] => [2,3,1,4,5,6] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9) => 0
[5,6,3,4,2,1] => [2,1,4,3,5,6] => ([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6) => ([(0,4),(0,5),(2,7),(3,7),(4,8),(5,8),(6,1),(7,6),(8,2),(8,3)],9) => 0
[5,6,4,2,3,1] => [2,1,3,5,4,6] => ([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6) => ([(0,4),(0,5),(2,8),(3,8),(4,7),(5,7),(6,2),(6,3),(7,6),(8,1)],9) => 0
[5,6,4,3,1,2] => [2,1,3,4,6,5] => ([(0,5),(1,5),(4,2),(4,3),(5,4)],6) => ([(0,3),(0,4),(1,7),(2,7),(3,8),(4,8),(5,6),(6,1),(6,2),(8,5)],9) => 0
[5,6,4,3,2,1] => [2,1,3,4,5,6] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8) => 0
[6,3,5,4,2,1] => [1,4,2,3,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9) => 0
[6,4,3,5,2,1] => [1,3,4,2,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9) => 0
[6,4,5,2,3,1] => [1,3,2,5,4,6] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => ([(0,6),(1,8),(2,8),(3,7),(4,7),(6,1),(6,2),(7,5),(8,3),(8,4)],9) => 0
[6,4,5,3,1,2] => [1,3,2,4,6,5] => ([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6) => ([(0,6),(1,8),(2,8),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(8,5)],9) => 0
[6,4,5,3,2,1] => [1,3,2,4,5,6] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8) => 0
[6,5,2,4,3,1] => [1,2,5,3,4,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9) => 0
[6,5,3,2,4,1] => [1,2,4,5,3,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9) => 0
[6,5,3,4,1,2] => [1,2,4,3,6,5] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6) => ([(0,5),(1,8),(2,8),(3,7),(4,7),(5,6),(6,1),(6,2),(8,3),(8,4)],9) => 0
[6,5,3,4,2,1] => [1,2,4,3,5,6] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8) => 0
[6,5,4,2,3,1] => [1,2,3,5,4,6] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8) => 0
[6,5,4,3,1,2] => [1,2,3,4,6,5] => ([(0,4),(3,5),(4,3),(5,1),(5,2)],6) => ([(0,5),(1,7),(2,7),(3,4),(4,6),(5,3),(6,1),(6,2)],8) => 0
[6,5,4,3,2,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 0
[6,7,5,4,3,2,1] => [2,1,3,4,5,6,7] => ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7) => ([(0,2),(0,3),(2,8),(3,8),(4,6),(5,4),(6,1),(7,5),(8,7)],9) => 0
[7,5,6,4,3,2,1] => [1,3,2,4,5,6,7] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(0,7),(2,8),(3,8),(4,5),(5,1),(6,4),(7,2),(7,3),(8,6)],9) => 0
[7,6,5,3,4,2,1] => [1,2,3,5,4,6,7] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9) => 0
[7,6,5,4,3,2,1] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => 0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of join irreducibles minus the rank of a lattice.
A lattice is join-extremal, if this statistic is $0$.
A lattice is join-extremal, if this statistic is $0$.
Map
permutation poset
Description
Sends a permutation to its permutation poset.
For a permutation $\pi$ of length $n$, this poset has vertices
$$\{ (i,\pi(i))\ :\ 1 \leq i \leq n \}$$
and the cover relation is given by $(w, x) \leq (y, z)$ if $w \leq y$ and $x \leq z$.
For example, the permutation $[3,1,5,4,2]$ is mapped to the poset with cover relations
$$\{ (2, 1) \prec (5, 2),\ (2, 1) \prec (4, 4),\ (2, 1) \prec (3, 5),\ (1, 3) \prec (4, 4),\ (1, 3) \prec (3, 5) \}.$$
For a permutation $\pi$ of length $n$, this poset has vertices
$$\{ (i,\pi(i))\ :\ 1 \leq i \leq n \}$$
and the cover relation is given by $(w, x) \leq (y, z)$ if $w \leq y$ and $x \leq z$.
For example, the permutation $[3,1,5,4,2]$ is mapped to the poset with cover relations
$$\{ (2, 1) \prec (5, 2),\ (2, 1) \prec (4, 4),\ (2, 1) \prec (3, 5),\ (1, 3) \prec (4, 4),\ (1, 3) \prec (3, 5) \}.$$
Map
complement
Description
Sents a permutation to its complement.
The complement of a permutation $\sigma$ of length $n$ is the permutation $\tau$ with $\tau(i) = n+1-\sigma(i)$
The complement of a permutation $\sigma$ of length $n$ is the permutation $\tau$ with $\tau(i) = n+1-\sigma(i)$
Map
order ideals
Description
The lattice of order ideals of a poset.
An order ideal $\mathcal I$ in a poset $P$ is a downward closed set, i.e., $a \in \mathcal I$ and $b \leq a$ implies $b \in \mathcal I$. This map sends a poset to the lattice of all order ideals sorted by inclusion with meet being intersection and join being union.
An order ideal $\mathcal I$ in a poset $P$ is a downward closed set, i.e., $a \in \mathcal I$ and $b \leq a$ implies $b \in \mathcal I$. This map sends a poset to the lattice of all order ideals sorted by inclusion with meet being intersection and join being union.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!