Identifier
Values
[.,.] => ([],1) => ([],1) => ([],1) => 0
[.,[.,.]] => ([(0,1)],2) => ([(0,1)],2) => ([(0,1)],2) => 0
[[.,.],.] => ([(0,1)],2) => ([(0,1)],2) => ([(0,1)],2) => 0
[.,[.,[.,.]]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 0
[.,[[.,.],.]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 0
[[.,.],[.,.]] => ([(0,2),(1,2)],3) => ([(0,1)],2) => ([(0,1)],2) => 0
[[.,[.,.]],.] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 0
[[[.,.],.],.] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 0
[.,[.,[.,[.,.]]]] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[.,[.,[[.,.],.]]] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[.,[[.,.],[.,.]]] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 0
[.,[[.,[.,.]],.]] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[.,[[[.,.],.],.]] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[.,.],[.,[.,.]]] => ([(0,3),(1,2),(2,3)],4) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 0
[[.,.],[[.,.],.]] => ([(0,3),(1,2),(2,3)],4) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 0
[[.,[.,.]],[.,.]] => ([(0,3),(1,2),(2,3)],4) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 0
[[[.,.],.],[.,.]] => ([(0,3),(1,2),(2,3)],4) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 0
[[.,[.,[.,.]]],.] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[.,[[.,.],.]],.] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[[.,.],[.,.]],.] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 0
[[[.,[.,.]],.],.] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[[[.,.],.],.],.] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[.,[.,[[.,.],[.,.]]]] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[.,[[.,.],[.,[.,.]]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[.,[[.,.],[[.,.],.]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[.,[[.,[.,.]],[.,.]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[.,[[[.,.],.],[.,.]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[.,[[[.,.],[.,.]],.]] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[.,.],[.,[.,[.,.]]]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[.,.],[.,[[.,.],.]]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[.,.],[[.,.],[.,.]]] => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 0
[[.,.],[[.,[.,.]],.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[.,.],[[[.,.],.],.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[.,[.,.]],[.,[.,.]]] => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[.,[.,.]],[[.,.],.]] => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[[.,.],.],[.,[.,.]]] => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[[.,.],.],[[.,.],.]] => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[.,[.,[.,.]]],[.,.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[.,[[.,.],.]],[.,.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[[.,.],[.,.]],[.,.]] => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 0
[[[.,[.,.]],.],[.,.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[[[.,.],.],.],[.,.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[.,[[.,.],[.,.]]],.] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[[.,.],[.,[.,.]]],.] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[[.,.],[[.,.],.]],.] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[[.,[.,.]],[.,.]],.] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[[[.,.],.],[.,.]],.] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[[[.,.],[.,.]],.],.] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[.,[[.,.],[[.,.],[.,.]]]] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[.,[[[.,.],[.,.]],[.,.]]] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[.,.],[.,[[.,.],[.,.]]]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[.,.],[[.,.],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[.,.],[[.,.],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[.,.],[[.,[.,.]],[.,.]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[.,.],[[[.,.],.],[.,.]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[.,.],[[[.,.],[.,.]],.]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[.,[.,.]],[[.,.],[.,.]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[[.,.],.],[[.,.],[.,.]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[[.,.],[.,.]],[.,[.,.]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[[.,.],[.,.]],[[.,.],.]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[.,[[.,.],[.,.]]],[.,.]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[[.,.],[.,[.,.]]],[.,.]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[[.,.],[[.,.],.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[[.,[.,.]],[.,.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[[[.,.],.],[.,.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[[[.,.],[.,.]],.],[.,.]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[[.,.],[[.,.],[.,.]]],.] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[[[.,.],[.,.]],[.,.]],.] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[.,.],[[.,.],[[.,.],[.,.]]]] => ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[.,.],[[[.,.],[.,.]],[.,.]]] => ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[[.,.],[.,.]],[[.,.],[.,.]]] => ([(0,5),(1,5),(2,4),(3,4),(4,6),(5,6)],7) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[[.,.],[[.,.],[.,.]]],[.,.]] => ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[[[[.,.],[.,.]],[.,.]],[.,.]] => ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7) => ([(0,3),(2,1),(3,2)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of join irreducibles minus the rank of a lattice.
A lattice is join-extremal, if this statistic is $0$.
Map
lattice of congruences
Description
The lattice of congruences of a lattice.
A congruence of a lattice is an equivalence relation such that $a_1 \cong a_2$ and $b_1 \cong b_2$ implies $a_1 \vee b_1 \cong a_2 \vee b_2$ and $a_1 \wedge b_1 \cong a_2 \wedge b_2$.
The set of congruences ordered by refinement forms a lattice.
Map
to poset
Description
Return the poset obtained by interpreting the tree as a Hasse diagram.
Map
maximal antichains
Description
The lattice of maximal antichains in a poset.
An antichain $A$ in a poset is maximal if there is no antichain of larger cardinality which contains all elements of $A$.
The set of maximal antichains can be ordered by setting $A \leq B \Leftrightarrow \mathop{\downarrow} A \subseteq \mathop{\downarrow}B$, where $\mathop{\downarrow}A$ is the order ideal generated by $A$.