Identifier
Values
['A',1] => 1
['A',2] => 4
['B',2] => 7
['G',2] => 16
['A',3] => 10
['B',3] => 22
['C',3] => 22
['A',4] => 20
['B',4] => 50
['C',4] => 50
['D',4] => 28
['F',4] => 110
['A',5] => 35
['B',5] => 95
['C',5] => 95
['D',5] => 60
['A',6] => 56
['B',6] => 161
['C',6] => 161
['D',6] => 110
['E',6] => 156
['A',7] => 84
['B',7] => 252
['C',7] => 252
['D',7] => 182
['E',7] => 399
['A',8] => 120
['B',8] => 372
['C',8] => 372
['D',8] => 280
['E',8] => 1240
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The atomic length of the longest element.
The atomic length of an element $w$ of a Weyl group is the sum of the heights of the inversions of $w$.
The atomic length of an element $w$ of a Weyl group is the sum of the heights of the inversions of $w$.
References
[1] Chapelier-Laget, N., Gerber, T. Atomic length in Weyl groups arXiv:2211.12359
Code
def atomic_length(pi):
"""
EXAMPLES::
sage: l = [atomic_length(SignedPermutations(n).long_element()) for n in range(1,8)]
sage: l
sage: fricas.guess(l)[0].sage().factor()
1/6*(4*n + 3)*(n + 2)*(n + 1)
"""
W = WeylGroup(pi.parent().coxeter_type())
w = W.from_reduced_word(pi.reduced_word())
return sum(a.height() for a in w.inversions(inversion_type="roots"))
def statistic(ct):
return atomic_length(WeylGroup(ct).long_element())
Created
Nov 23, 2022 at 16:34 by Martin Rubey
Updated
Nov 23, 2022 at 16:34 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!